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1 Introduction and Overview 
 

Currently there is no general foundational theory for networks that can reduce the 
extremely large (trillions of real values for a million node network) into a few 
characteristic values (called network metrics) that distill the essential aspects of the 
network into just a few metrics (functions of the network matrix values). It is well known 
that a network is characterized exactly by the n2-n non-negative off-diagonal elements of 
the connection matrix whose elements Cij consist of the ‘strength’ of the connection 
between nodes i and j. Our objective is to develop a very general mathematical 
foundation for networks that permits practical application in the monitoring of large 
networks, such as the internet, for both known and unknown attacks, intrusions, worms, 
viruses, and generally for destructive agents, processes, and system failures.  

This document describes the final technical results for Cyberspace Assurance 
Metrics: Utilizing Models of Networks, Complex Systems Theory, Multidimensional 
Wavelet Analysis and Generalized Entropy Measures, a project sponsored by the 
DARPA Information Assurance and Survivability Program, and funded through the 
United States Air Force Research Laboratory. The researchers, led by Dr. Joseph E. 
Johnson, have discovered a strong connection between the topological specification of a 
network in the form of a connection matrix and the branches of mathematics known as 
continuous group theory and Markov processes.  Based upon this research we have 
proposed that entropy metrics, and the sub-networks arising from an associated cluster 
analysis of the network so measured by these metrics, can be useful indicators of aberrant 
processes and behavior.  This is achieved by tracking the generalized entropy metrics and 
identifying the normal range of values.  Our hypothesis is that as abnormal ranges are 
observed on the entropy values of a network or sub-networks, there is evidence that the 
entropy metrics for that subnet go to abnormal values as the topology changes in an 
abnormal way.  Other team members have obtained important connections using higher 
order Renyi entropy metrics, and complexity theory to both monitor real networks and to 
study networks by simulation.       

This report is organized into four sections: Section One discusses the problem and 
potential approaches for addressing network metrics; Sections Two and Three discuss the 
technical and mathematical approaches taken by the researchers, especially the 
mathematical equations and reasoning used; and Section Four addresses the results and 
conclusions of the project with a discussion of future research potential. The Appendices 
are technical papers written and published by the researchers during the grant cycle. 
 
1.1 Statement of the Problem 
 
 Systems, such as a gas, can be described exactly, but uselessly, if one could 
specify the three coordinates and the three momenta of each of the 1024 particles that 
make up the gas. The theory of thermodynamics reduces this astronomical number of 
variables to just a few holistic variables which are extremely useful for the description of 
the system as a whole: temperature, pressure, entropy, volume, etc. These variables are 
intuitive, and hierarchical (in the sense that they can be applied to a spatial sub domain of 
the system). The internet and other types of large networks are other examples of systems 
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with a vast number of coordinates that are specified by the type of connection (matrix) 
between one node (or point) in the system and another node. For example Cij might 
represent just whether a connection exists from i to j (Cij =1) or not (Cij =0), or it could 
represent the extent of the connection (as a non-negative real number).  For a network of 
a million nodes (106) one then has a trillion numerical values (1012) all of which are 
constantly changing as new connections are made and others are broken with Cij(t) as a 
matrix function of time. As opposed to the science of thermodynamics and statistical 
mechanics, there is no foundational intuitive, hierarchical, set of metrics (functions of Cij) 
for the description of networks such as we have with thermodynamics or statistical 
mechanics. Heat and temperature require the concept of approach to equilibrium and 
there is no obvious way to characterize internet traffic as approaching equilibrium that 
supports reasonable concepts of equilibrium.  As there is no meaning associated with 
distance in a network, the concepts of pressure and volume also do not have a parallel 
definition from thermodynamics.   
 
1.2 Technical Approaches 
 

We have found that entropy (as a measure of system disorder) is a good candidate 
for a network metric as shown below.  In what follows we can speak equivalently of 
Information which is defined as the negative of entropy, and representing system order. 
This project on network security addressed the problem of the identification of attacks 
and intrusions in networks such as the internet.   As there is no general mathematical 
theory providing an underlying structure for networks, past efforts have centered on 
detection of specific types of attacks, intrusions, worms, viruses, and malevolent 
processes.  We have sought general techniques and specifically a mathematical 
foundation that will provide a set of metrics that describe holistic aspects of the vast 
detail of large network topology. The author has been able to link the connection matrix 
that exactly describes a network, to a member of a Lie algebra of generators of 
continuous Markov processes.  Thus in one step we can use mathematical results and 
insights in multiple branches of mathematics to each shed light on the other: network 
theory, Markov theory, continuous group theory, diffusion theory (increasing entropy), 
and information theory.  This work suggested also that the metric of entropy as a measure 
of disorder on the network would be a meaningful measure of the network and its 
subnets. Specifically, we were able to show that the entropy measures the rate of 
diffusion to a state of disorder of a fluid that flows on that same network topology thus 
providing an intuitive foundation for the entropy metrics.  Finally, it can be shown that 
the entropy on a network is related to the degree of clustering in the topology.  The 
entropy metrics are therefore suggested as good monitors for the changes in topology 
over time with the assumption that the connectivity and flow rates of subnets which are 
under attack will change substantially and since the entropy metrics is defined by the 
order or disorder of this topological structure, then these metrics should reflect deviations 
from their normal patterns of temporal change thus indicating attacks and intrusions.  
 
 Dr. Vladimir Gudkov, working with the author, made very substantial progress in 
the understanding of various higher order Renyi entropies and their intuitive 
interpretation as measuring order and disorder in the higher dimensional aspects of 
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network connectivity. He also was able to run a substantial number of simulations and 
there showed that the differences of different generalized entropies are highly sensitive to 
cluster formation and thus to topological change in the network.  His studies in 
complexity theory related to networks indicate that the use of higher order Renyi entropy 
metrics can be rapidly computed on real networks. His work on simulated networks was 
extremely enlightening in the ability to monitor the various types of generalized entropy 
under diverse formations and dissolutions of topological clustering.  In this work he led 
graduate students in the development of new lighter weight SNORT type programs for 
the capturing of internet traffic which could in turn be used to compose an associated 
network matrix.   Subsequently their work on relatively small networks at USC was able 
to compute and track entropy variations over time.   These results are reported in the 
attached papers by Gudkov and Johnson which have been submitted to the Los Alamos 
Preprint Library. 
 
 Working with Gudkov and Johnson, Dr. Shmuel Nussinov was able to find a very 
revolutionary way to identify clusters in a large network.  One can show that just as three 
nodes can be equally spaced at the points of an equilateral triangle in two dimensions, 
and as four nodes can be equally spaced in three dimensions at the points of a 
tetrahedron, then the n nodes of a network can be equally space by placing them at 
equidistant points in an n-1 dimensional space.  A system using forces that pull nodes 
closer if they are connected and pushing them apart if they are not connected provides 
equations that dynamically iterate the condensation of clusters out of the network.   
 
2 Methods and Procedures 
 
 The following section discusses the technical assumptions and procedures used by 
the researchers. 
 
2.1 Connection Matrix 
 

The connection matrix Cij(t), as defined for  a set of network flows among nodes, 
contains the entirety of  information of that structure and further represent as a sequence 
of representing their change over time.  Such a connection matrix changes over time, but 
observed directly, these million of microscopic changes do not provide the macro-scale 
variables, or network metrics, that could be used to monitor the overall state of a network 
or its sub-networks.  Generalized entropy functions provide a set of metrics that directly 
depend upon the clustering densities of nodes and which ‘summarize the topology’ and 
thus afford potential intuitive macro-scale metrics to observe the Cij(t) dynamical 
changes.  One of the hypotheses of our general approach is that abnormal changes in 
these entropy metrics will reflect abnormal structural changes in the connection matrix 
indicative of intrusions and abnormal behavior, and yet not be sensitive to uninteresting 
small statistical fluctuations.  Thus insights into the interpretation and meaning of these 
generalized entropy type functions and the identifications of subnets are important to 
guide the practical computational applications.   
  Any connection matrix is defined only by (nonnegative) off-diagonal elements 
and thus the diagonals admit any arbitrary value.  We have been able to show that the 
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choice of diagonal elements to be the negative of the sum of the row elements, for each 
column, is the generator of a Markov transformation of flows on the network via M(s) = 
expsCij where s is a parameter generating the extent of the flow. The exponentiation of a 
(square) matrix is defined in the same manner as ex= 1 + x + x2/2! ....    As this is a 
continuous Markov transformation, it represents the flow of a conserved quantity which 
is the sum of the values of the vector upon which the transformation acts.    Formally one 
can show that all allowable C matrices with this diagonal are members of a Lie algebra 
that generate Markov type Lie group flows. The technical aspects of this work are 
attached as a separate paper. Such flows are not to be interpreted necessarily as the flow 
of information but rather the flows reflect the topological structure, connectivity, and 
clustering. Other choices of diagonal values can be shown to give continuous general 
linear transformations that provide for source and sink (of a hypothetical fluid such as 
information or money) at each node.  This connection between network connection 
matrices and the rich mathematical domain of continuous (Lie) groups and algebras can 
provide an intuitive guide for the entropy dynamics of a network. In fact the generalized 
entropy equations of the last section here can be seen as the measure of the generalized 
entropy increase when a conserved fluid begins at a given node and is dispersed by the 
topology in first order. Thus the important advantage of the link with continuous Markov 
transformations is that one obtains an extensive mathematical insight from Lie group 
theory that can provide guidance in the choice of entropy functions and where they 
should be calculated.       
 
2.2 Dynamical Network Changes 
      

One must be careful not to confuse the dynamical flow of the Markov conserved 
‘fluid’ (which is used as a guide to network entropy calculations) with the dynamical 
changes in the network which arise from the time dependence of Cij(t).  In the practical 
world, the Cij(t) is defined over a time collection period centered about the instantaneous 
time t.   As clusters form and dissolve, and topological structures change with time due to 
the dissolution and reforming of different connections, we need to track the changes in 
the topology over time for some sub-net or the entire network.  Any natural method of 
identification of a sub-network, c, can be used for the definition of a domain for the 
calculation of the generalized entropy over time Rq(c,t) which serves as a macro level 
variable that should be insensitive to small changes in the topology of the sub-network c.  
Thus one can monitor the local entropy densities over networks and sub-networks, c, 
which can be tracked over time as a density at a specific node or for any cluster as the 
cluster dissolves over time under the changes in Cij(t).   The use of other spectral 
‘classifications’ of nodes can also be used to group nodes for entropy monitoring 
including eigenvectors and groups of nodes defined from natural network design 
configurations. One such example of definition is obtained by classifying nodes into 
classes depending first on the number of connections to other nodes.  Then to separate the 
subclasses of each class depending on the number of connections to other classes etc. 
until the procedure is exhausted.  

We have also been able to show that for the second order Renyi entropy, an 
associated information function can be defined that consists of  a natural expansion in a 
Taylor series about the evolution parameter, s, which expansion has terms which are the 
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diagonals of the various powers of the Cij matrix, terms which are familiar to those in the 
field as useful expressions of the structure. We have additionally been able to show that 
the powers of Cij (with diagonals set to zero) where the diagonal at each stage is set equal 
to zero prior to multiplying by the next power of C, give a set of diagonal values which 
count the non-recurring paths through the starting nodes.  Such powers are not linearly 
related to the original C matrix and have other interesting properties.    
 
3 Mathematical Background 
 
 This section describes the mathematical equations and theory that are the 
foundation of this work. 
 
3.1 Network Topology  
 
 The traditional representation of an undirected graph or network topology utilizes 
an ‘adjacency matrix’, C, where Cij = 1 if nodes i and j are connected and 0 otherwise, 
thus leaving the diagonal assignments arbitrary. We first show that with the assignment 
of the diagonal values to be the negative of the sum of the non-diagonal elements in each 
row, C becomes an element of a (Markov type) Lie algebra that generates conserved 
flows on that network.  This provides a unique connection between static network 
topologies and flows generated by the associated Lie group (or monoid if non-negative 
components are used).  Thus a topology specified by C generates irreversible continuous 
Markov transformations (flows) along the connections in that topology that represent 
diffusion and thus increasing entropy of the conserved entity and achieving a single final 
equilibrium state.  Next, using a second order Renyi (generalized Shannon) entropy 
metric, we show that the diagonal values of the powers, Cn , (often utilized to study the 
topology of a network) are the nth derivatives evaluated at t = 0 of a function of the Renyi 
entropy of the flowing entity. Thus the diagonals of the powers of C can often provide a 
spectral ordering of nodes often with symmetry broken with higher powers, and offering 
a ‘series expansion’ of a network.  We next show that the counting of non-returning paths 
of k steps between two nodes is given by powers of C with the diagonal removed at each 
power.  Fourthly, the view of a topology is explored in relation to flows and diffusion 
associated with these transformation groups and extensions to the general linear group for 
arbitrary diagonal C values using the n different diagonal Abelian transformations. It is 
shown that (diagonal) values contained in the derivatives of the information function at 
t=0 contain all off diagonal information thus suggesting that the eigenvalues of these n 
different C matrices could be used to more extensively classify network topologies. 
These transformations can be interpreted as supplying extra ‘fluid’ at any arbitrary node 
during the process of approach to equilibrium. The diagonal terms and eigenvalues here 
explored provide metrics for monitoring topologies and topological changes in networks 
along with an intuitive model of flows of a conserved fluid by diffusion toward 
equilibrium.  These metrics are hoped to provide a deeper understanding of network 
topologies and structures which could be useful for problems both in solid state physics, 
internet dynamics and intrusions, and other network applications in social, engineering, 
and economic problems.  
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3.2 An Understanding of Networks 
 

The extensive mathematical literature on graphs (networks) has seen substantial 
multidisciplinary research activity and interest over the last half century centering on 
problems in social, transportation, organizational, utility, electrical circuit, and financial 
networks in addition to those in physics. But most recently it is recognized that a better 
understanding of networks is critical because of our reliance on the internet, an incredibly 
large and complex communication network that is rapidly becoming totally critical for 
modern society.  

Since a network (or graph) is defined as a set of points called nodes with lines 
connecting some but generally not all of the nodes.  Sets of nodes that are disconnected 
from the rest of the structure can be removed and treated as a separate network leaving 
networks for which each node is connected to at least one other node in the topology. If 
the lines connecting the nodes are unidirectional then the network is said to be undirected 
and if the connections are directed then the network is said to be directed.  The problem 
is similar to the numbering of identical particles in quantum theory but here one cannot 
perform a ‘second quantization’ because the underlying topological connections provide 
some nodal distinctions. 
 A number of researchers have independently suggested that the eigenvalues of the 
connectivity matrix (by any of the three methods of assigning the diagonal discussed 
above) will have values, which are in one to one (isomorphic) correspondence for, and 
only for, topologically identical networks. This would have been a hoped for result since 
the eigenvalues of the symmetric connectivity matrix are real and are independent of the 
numbering of the nodes.  But this is known to fail for each of the three methods of 
assigning the diagonals listed above.   It is true that the resulting eigenvalues “almost” 
distinguish the topologies except for a small percentage of networks which are called 
‘isospectral’ meaning that the same set of eigenvalues represents two different 
topologies.  But in the final analysis, although the connectivity matrix eigenvalue method 
distinguishes many of the topologies, it fails to distinguish a small percentage for n=5 
nodes and higher n graphs.   

Any arbitrary numbering of the nodes of a network allows an undirected network 
to be completely characterized by a connectivity (or adjacency) matrix Cij which has the 
value ‘1’ if nodes i and j are connected and ‘0’ otherwise thus leading to a symmetric 
matrix.  If the graph is directed with a connection pointing from i to j, then Cij  is set to 1 
but with Cji is set to ‘0’ while diverse bandwidths of connectivity can be represented by 
any set of off-diagonal nonnegative reals.  The setting of the diagonal can be to values of 
‘1’ if a node is considered connected to itself or ‘0’ if it is not.  Both assignments are 
relatively arbitrary and describe the same topology.  Because of the arbitrary assignment 
of numbers to the nodes, there are n! different matrices (connected by the symmetric 
group on n symbols, Sn) that describe the same topology.  Historically researchers had 
sought invariant measures (under Sn) with which to hopefully characterize the topology 
and solving such problems as graph isomerism (testing two C matrices to see if they 
describe the same topology).  As the eigenvalues of Cij are invariant under Sn then this 
has been a natural hope for network classification.  Regrettably, there are networks that 
are topologically different as low as order 5 for which the eigenvalue spectra are the 
same (isospectral), whether the diagonals are set to value of ‘1’ or ‘0’.  Subsequent 
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research has centered mainly on studies of the eigenvectors of C and powers of C. The 
author and associates have studied network topology of large structures using two 
different practical algorithms for cluster identification, one depending upon mutual 
generalized Shannon (Renyi) entropies and another model based upon ‘condensing’ 
clusters using a physical attractor model using forces between nodes which are uniformly 
distributed over an n-1 dimensional sphere. We have sought fast algorithms to monitor 
large networks in real time using Renyi entropies on clusters and subclusters as network 
metrics.       
 
3.3 Lie Groups 

 
This work will show that with a particular assignment of the (otherwise arbitrary) 

diagonal values of Cij to be the negative of the sum of other values in each column, then 
Cij is a member of a particular ‘Markov-type’ Lie algebra.  Furthermore this result will 
hold even if the Cij are generalized to any non-negative values and whether the graph is 
undirected (symmetric Cij )  or directed and thus nonsymmetrical.  This result connects 
the static topology concepts of a network with the dynamical evolution of continuous 
(Lie) group theory.  We will show that the Cij represents the dynamical evolution of a 
conserved quantity (information, water, goods) on the network as the associated Cij 
generates infinitesimal transformations that conserve the sum of the components of any 
vector upon which M= exp(λ ij Cij) acts. Thus Cij represents an infinitesimal 
transformation for a Lie group.  It then follows that any non-negative values for Cij and 
λij are allowable and represent unequal flow rates such as would be the case for internet 
bandwidths or transportation flows.  Then using the authors previous work on 
decomposition of the general linear group GL(n,R) into the Markov type group and an 
Abelian scale transformation group, we are able to generalize the diagonal to any real 
value which will be seen as a ‘creation’ or ‘annihilation’ rate at that node for the 
(otherwise) conserved quantity under the previous action. Generally then, our work takes 
any set of values of Cij ,with non-negative off-diagonal values, and identifies the resulting 
transformation within GL(n,R) as a dynamic evolution of an associated Lie algebra.  The 
meaning then becomes much more transparent for the interpretation of the eigenvalues 
and eigenvectors of Cij  similar to normal nodes for the system.  For undirected 
topologies, the symmetric Cij give eignenvalues representing the rates of exponential 
decrease to a state of higher entropy and equilibrium where all nodes have the same 
quantity of the conserved entity which we derive for a second order Renyi entropy.                                      

We also investigate higher order products of the Cij that specify nonrecurring 
paths back to a given node after k steps.  Such non-recurring path generators provide 
useful new information on the lower order connectivity of the system related to clusters 
(sub-networks that are more highly connected than the surrounding network) and cliques 
(densely connected sub-networks with every node connected to every node). These 
structures are not linearly related to Cij and provide eigenvalues and cluster values that go 
further to distinguish the topologies.  Entropy values of these matrices provide additional 
invariant information and metrics for node ordering. The results can be collected as 
metrics for the topology and a deeper understanding of these metrics and the connection 
between Lie groups and network topologies. Generalization to any set of diagonal values 
is shown to be equivalent to adjoining the n-dimensional Abelian scaling group to the 
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Markov monoid thereby generating sources and sinks of the entity at each node 
independently that is otherwise conserved under the Markov monoid.  As these new 
matrices each have differing eigenvalue spectra, but still characterize the same off-
diagonal topology, they can be used to further classify networks.     

  It is necessary to understand some background material on Lie groups, algebras, 
and monoids including the general linear group and its subgroups.  Specifically, our 
previous work explored a decomposition of the general linear group in n dimensions 
GL(n,R) into a Markov type Lie group M(n,R) and the Abelian  group of coordinate scale 
transformations A(n,R) (or equivalently the Lie algebras that generate them).  The n scale 
transformations are generated by the n by n matrices, Lii, consisting of zeros except for a 
single diagonal position which has the value ‘1’ as given by the matrix elements:  Lii

mn =  
δi

m δi
n.   The Markov type Lie group was defined as those linear transformations which 

are continuously connected to the identity which preserve the sum of the components of a 
vector.  The generators Lij   were defined in matrix form by the n2-n different operators: 
Lij

mn =  δi
mδj

n  -  δj
mδj

n. The Lij
 have the feature that the sum over any column is ‘0’ and 

consequently, the Lie group M(n,R) that they generate, (with M = exp(λij Lij)), has 
elements where the sum over any column is ‘1’ as is required for a Markov 
transformation.  This previous work explored the Lie group generated by the Lie algebra 
defined by the Lij.  Then the general linear group can be easily seen to be generated by 
the two Lie algebras: the Markov type Lie algebra, Lij, and the Lie algebra of scale 
transformations Lii.  The Markov type Lie algebra, is not simisimple, not nilpotent, and 
not Abelian.  It possesses no Casimir type operators as all products of the algebra 
elements are contained in the algebra itself.  M(2,R) is also the smallest nontrivial, non-
Abelian algebra as it consists of only two elements with  [L12

 , L21] = L12
 - L21.  As the 

algebra preserves the sum of a vector’s components, it leaves invariant the vector |1> = 
(1,1,…1) and constitutes motions on the hyperplane orthogonal to the vector |1> in n 
dimensions.    

Special interest in this algebra arises from the restriction that all vectors with non-
negative components are transformed into vectors with non-negative components for 
which the necessary and sufficient condition can be shown to be that the parameters λij 
are non-negative in exp(λij Lij).  Such transformations constitute all Markov 
transformations which are continuously connected to the identity, but the non-negativity 
of the λij result in the loss of the inverse transformations.  It is known that the Markov 
transformations do not have an inverse and thus do not form a group, but this 
methodology allows one to utilize the power of Lie groups and algebras nevertheless to 
study continuous Markov transformations.  The particular basis for the Markov Lie 
algebra chosen above, Lij, performs the separation of allowable from non-allowable 
Markov transformations via the non-negativity of the λij because the Lie Algebra basis 
was chosen to take a fraction of one component and give it to another.  This type of 
transformation maintains and separates the acceptable transformations from those that 
can generate unphysical states (negative components).  Consequently the Markov Lie 
group representations are very suitable objects for the manipulation of n-tuples that give 
the non-negative decomposition of unity required for probability theory.     
 
3. 4 Markov Theory and Networks 
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 Next we need to review the connection that the author and PI of this seedling 
grant has  discovered between Markov theory and networks, namely that every network 
connection matrix, with the diagonals defined in a specific way, represents an element of 
a Markov Lie algebra monoid.  In its abstract form, we can represent a network as a set of 
nodes that are numbered with the integers (1,2,…n) for identification.  The connectivities 
among pairs of nodes are represented by lines which join nodes and their whole structure 
can be represented by the connectivity or adjacency  matrix,  Lij  which is defined to be 
equal to ‘1’ if nodes i and j are directly connected, and ‘0’  otherwise, where i and j range 
from 1 to n. The diagonal elements, Lii, are traditionally set to ‘1’ if a node is considered 
‘connected to itself’ or set to ‘0’ if it is not, thus defining the complete matrix with either 
‘0’s or ‘1’s on the diagonal. We will here look only at undirected graphs for which the 
matrix is symmetric: Lij  = Lji.  Consideration of both the Markov Lie algebra generators 
and the connectivity matrix (with arbitrary diagonals) allows one to see that the 
connectivity matrix is a particular combination of the Lie algebra generators for the 
Markov type Lie group if the diagonals are set to be the negative of the off-diagonal 
terms in that column. This results in a matrix that has the sum of all elements in each 
column equal to zero. As the connectivity matrix is symmetric for an undirected network, 
the sum of elements in each row will also be zero. This method of setting the diagonal is 
in other contexts called the Lagrangian form of the connectivity matrix.  In any of the 
three methods described above for the determination of the diagonal, it is obvious that 
each describes the connectivity in the same way, as connectivity is described by the off-
diagonal elements.  The central problem is that (even ignoring the diagonal terms) many 
different connectivity matrices describe the same ‘topology’ or connectivity among the 
nodes.   The root of this problem is that the numbering of the nodes, is arbitrary.  The 
central problem then is to devise a mathematical technique to distinguish different 
networks or graphs and even more generally to classify all possible graphs of a given 
order (number of nodes) in a unique way and thus to eliminate the arbitrariness of the 
node number assignment but to not discard the essential ‘connectivity’ and thus to 
uniquely classify the topology itself.  This is not only an unsolved problem but one that is 
known to be of extreme complexity and difficulty.  The nodes must be numbered in order 
to form the connectivity matrix but all permutations of the numbering (and thus all 
resulting connectivity matrices) are topologically equivalent.   
 From the discussions on the Markov Lie algebra above, one immediately 
recognizes that if the diagonal elements of the connectivity matrix are taken to be the 
negative of the sum of the non-diagonal elements in that column, then the resulting 
connectivity matrix will be a generator of a continuous Markov transformation which in 
turn preserves the sum of components in a ‘vector’ upon which the transformation could 
act. In other words, the connectivity matrix is an element in the Markov Lie algebra. But 
since the network was defined originally as a static topology with no ‘vector space’ to be 
acted upon, such interpretation requires some reflection.  The Markov transformation 
basically consists of values of ‘1’ for each valid connection between two nodes and ‘0’ 
otherwise and these can also represent transition probabilities per unit time. The 
implication is that if this matrix acts upon a vector that represents quantities at the nodes 
(water, information, energy, probability) then transfers will occur from all nodes at equal 
rates to the connecting nodes until equilibrium is reached. Thus the connectivity matrix, 
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which initially represented a static topology, can now be interpreted as a time translation 
operator for the dynamical evolution of a vector of conserved substance that moves at 
equal rates among all connecting nodes.   Obviously then, the eigenvectors of the matrix 
represent the equivalent of ‘normal nodes’ for the system.  The eigenvectors are nodal 
combinations, of quantities at those nodes that exponentially decay at the rates given by 
the associated eigenvalue.  Isospectral networks that represent different intrinsic 
topologies thus have identical decay rate spectra (similar to degenerate energy spectra for 
the Hamiltonian).  Consequently, this analogy connects a static network topology, via the 
connectivity matrix, to dynamical flows of some conserved substance in the equivalent 
network.  It furthermore provides an interpretation for alternative choices of the diagonal 
elements since any other choice other than that for the Markov algebra diagonal values 
implies an exponential growth or decay rate of the otherwise conserved substance at the 
respective node.   Thus this analogy now also provides an understanding of the other 
choices for diagonal elements and can be used to appropriately model such dynamics.  
Although it is regrettable that these eigenvalues do not distinguish the topology, there 
might be other ways to break the isospectral degeneracy.  
 Now consider a connectivity matrix, C, with zero values placed on the diagonal.  
This matrix will give a transition from i to j when that value is ‘1’.  By forming C2, the 
terms give the number of ways that one can go from i to j through some intermediate 
node k.  Specifically, (C2)ii , the diagonal elements, give a count of the number of ways 
that one can perform a transition from a node to another different node (since C has 0 for 
diagonal elements) and return to that node in exactly two steps. Now remove the diagonal 
values (replacing the elements with 0s), and use the removed diagonal values to form the 
first row of a matrix which we call the self-connectivity matrix, S.  Next form C3 = C*C2 
and place the new diagonal into the second row of the connectivity matrix and replace 
their values with 0 as before and continue this process.  These diagonal elements of Cm 

count the number of ways that one can leave a node and return to that node in exactly m 
steps without passing through the initial node in the interim process.  As such they ‘feel 
out’ the topological structure around each node by counting the number of distinct paths 
that leave and then return to each node without returning to that node during the 
transitions.  As the maximal path to explore the entire topology requires n-1 steps out to 
the most distant node and n-1 back, then we need to perform this process 2(n-1) times (in 
order to acquire complete topological information) resulting in 2(n-1) rows to the self 
connectivity matrix.  This process also results in 2(n-1) matrices whose ij elements count 
the number of paths from node i to node j and which we call the mutual connectivity 
matrices. The 2(n-1) mutual connectivity matrices, along with the original S matrix, can 
be converted into Markov algebra generators by placing the negative of the column sum 
in each diagonal position (replacing the 0s) thus yielding 2n-1 n x n matrices in this set. 
The process of removing the diagonal at each stage is not linear and thus the mutual 
connectivity matrices will have independent eigenvalues which are now to be computed 
for each matrix.  These matrices generate continuous Markov transformations based upon 
generators that transition m steps at a time (leap out into the network) without returning 
to the original node in lowest order.  

The n eigenvalues of each of these 2n-1 mutual-connectivity matrices will provide 
a more extensive classification of the topology independent of node ordering.  Also the 
2(n-1) different values of the sums over all nodes, for each order, of the self connectivity 
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vectors, constitute another metric for the topology that is independent of the nodal 
ordering.  Taken together this provides n(2n-1) + 2(n-1) = 2n2+n-2 independent measures 
of the topological structure that are independent of nodal numbering. The self 
connectivity matrix C provides extensive information on the nature of clusters around 
each node because if a node is highly connected to adjoining nodes at m steps, then the 
m, and subsequent self connectivity values for that node, will be very large. If on the 
other hand a node is isolated by only one path to other parts of the topology, then the 
values of that nodes’ self connectivity will be minimal. In this last case one will have a 
minimum entropy and maximum information as defined as a sum over all nodes at each 
level m with a standard expectation of information (negative entropy) equation   Im = Σj 
Cmj Log2 Cmj ).  If the node is part of a clique (a sub-graph with every node connected to 
every other node) then the self connectivity will be a maximum (and thus will have a 
maximum entropy) and Im will be maximal.    
 It is not claimed that these methodologies distinguish and classify all topologies 
but rather that they provide a way to methodically capture additional information on the 
topological structures over and above the eigenvalues and eigenvectors of the root 
connectivity matrix. We are currently using computer models to study these 
classifications. We also believe that the methods of using the various Markov Lie algebra 
elements derived from the connectivity matrix and the resulting dynamical time evolution 
of a conserved entity flowing on the network, gives useful insight into diverse practical 
network problems.  Although the connectivity matrix studied above was for an undirected 
graph, the same analogies and models obtain with directed flows and also when the flows 
occur at different rates as represented by any set of real non-negative numbers in the off-
diagonal positions of the connectivity matrix.   

We have shown that the connectivity matrix for networks and graphs is part of a 
Markov Lie algebra (or monoid) and this provided insight into invariant measures of the 
topologies, clusters, and dynamics of networks and graphs. We now need to study how 
far these invariant measures can be used to uniquely classify topologies and sub-
topologies in networks as well as study practical applications of the network dynamics.  
It is suggested that the Markov Lie group, associated Lie algebra, and generalized 
definition of information, can bring much deeper insight into an understanding of both 
classical and quantum uncertainty and their measurement both in practical problems and 
the theoretical foundations.         
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4 Results and Discussion 
 
4.1 Patent Applications 

  
 The work of Gudkov and Johnson has resulted in a patent application (“System 
and Method for the Analysis and Classification of Networks and the Like”) which is now 
pending involving entropy, mutual entropy, and cluster identification.  The work of 
Johnson, Gudkov, and Nussinov had earlier resulted in a provisional patent application 
on the rapid identification of clusters in large networks; however, this provisional patent 
was not formally submitted.  These clusters can be usefully used to track the associated 
entropy density.   The attached technical documents and papers document the details of 
our work.    
 
4.2 Conclusions 
 

In conclusion, we seek methods of optimally defining Cij(t), and of selecting sub-
networks (such as clusters, cliques, natural sub-nets, spectral disaggregation (as described 
above, and including the entire network itself) for each of which we calculate a series of 
generalized entropies and track these ‘metrics’ over time as macroscopic variables 
indicating network behavior.  The hypothesis is that a judicious set of these choices will 
track the associated entropy changes over time such that anomalous values will be 
associated with network intrusions, attacks, or malfunctions.   
 The two primary tasks then become (A) the computation of the generalized 
entropies on networks that are mathematical simulations and the tracking of the metrics 
as the network changes in the connectivity and cluster structure over time. This work is 
critical because we can build networks of specific properties and study the behavior of 
the metrics in a controlled environment.   The second task (B) is to study the behavior of 
the real internet traffic.  While this has the advantage of being the ‘real world’, it has the 
disadvantage of being very difficult to actually measure.  The measurement difficulties 
arise both from privacy issues and concerns as well as situations where the traffic simply 
cannot be gathered because it is among nodes all of which lie outside the domain of 
collection.  Consequently, Cij  may only be known in certain blocks with others totally 
unknown.   
 
4.3 Recommendations for Future Work 
 
Implicit in future work is: 
1. Optimal Entropy Metrics: Even with extensive progress already made, it is critical to 

reduce the number of metrics that can be reasonably investigated.  We need to 
determine which of the generalized Renyi’ entropies and which differences of which 
entropies.  

2. Specifically we need a deeper understanding of entropy as is afforded by the links 
between topological structure, entropy and information theory, continuous group and 
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algebra theory, Markov theory, diffusion, and rates of change of the connection 
matrix.  

3. As each Renyi entropy is defined on a vector of probabilities we need to know how 
to define this on a matrix (which is a collection of n vectors of probabilities for a 
probability distribution of n sectors).   

4. We also need physical interpretation and rapid computational techniques to utilize 
for large matrices.  

5. We need to understand the meaning of these entropies in terms of specific 
topological structures using mathematical analysis and prototyping experiments on 
randomly constructed matrices.   

6. These prototype experiments must also be performed on changing topologies in 
order to determine the numerical ranges of specified changes in specific topologies. 

7. We need to understand more about the range of real internet traffic flows as the 
subset of prototyped connection matrices. Specifically, what subcategories of 
possible scaling matrices (as these seem to limit the connections matrices describing 
real traffic). 

8. It is necessary to both identify means of data collection and how to treat missing 
values and sectors of C that cannot be captured in real life.  

9. Certainly one of the most important problems is how to identify subnets where the 
entropy metrics can be individually computed because the entropy deviations are 
very small on very huge networks until it is too late and the attack or aberrant 
process has dominated a large portions.  

10. Given this, then upon real subnets what is the normal range for the chosen entropy 
metrics being tracked on the subnets. 

11.  It would be important to investigate the extent to which one can identify a particular 
worm, virus, or malicious by the metrics profile.    

12. In conclusion: our recommendations center on increasing the mathematical 
understanding to identify optimal entropy and gaining an intuitive guide, increasing 
the speed of the computation, gaining knowledge, as specified above, from the 
prototype experimentation, and finally proving the primary hypotheses, on real 
networks, that entropy metrics give a general, fast, intuitive, hierarchical, method for 
providing at least an order of magnitude improvement in the detection of malevolent 
processes on computer networks especially new types of attacks.      
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I. INTRODUCTION

A graph or network consists of n vertices/nodes Vi with edges (communication lines)

connecting them. It can be described by an n × n connectivity matrix C (refereed to in

graph theory as the adjacency matrix) where

Cij = Cji = number of edges connecting Vi and Vj.

Even when we allow Cij to be only 0 or 1 - for (dis)connected ViVj, the number of C

matrices 2n(n−1)/2 is huge already for moderate n.

If two matrices differ only by the labelling of the vertices - i.e. by a similarity transfor-

mation C ′ = U−1CU with U (U−1 = U †) effecting the permutation of rows (columns) of C

- then C and C ′ represent the same graph.

Since there are n! such permutations the problem of deciding whether the two connectiv-

ity matrices correspond to the same graph though not NP complete [1] is believed to be of a

high degree of difficulty. It is equally hard to find intrinsic relabelling invariant features, of

graphs which characterize all graphs. Even if not achieving this goal, such intrinsic features

may be most valuable. Thus the characteristic polynomial or eigen-value (λ1 . . . λn) of the

connectivity matrix encode many important graph theoretic features[2].

For most applications a complete characterization of graphs/networks is redundant. We

are often interested in the ”Big picture” or gross features. These include the answers to the

following general questions about the graph/network:

Q1: “Are there some groups of vertices which are relatively strongly interconnected and

more weakly connected to the rest of the “external vertices” ? ”

We will refer to these groups as “clusters in graph.” Clearly these differ from the graph

theoretic “cliques” defined by requiring that each vertex in the clique be connected to all

other vertices in the clique with no reference to the extent of external connections.

Q2: “Are there groups of vertices which are “distant” from each other in the sense that

there are no (or few) “short paths” connecting them?” (“Short paths” are those with a

small number of consecutive links.)

Ideally we would like to view a complex graph as a smaller set of (k ¿ n) of “super

vertices” each having a specific internal structure. By connecting to other super vertices,

these form a “super graph” at a higher level.

The shear number of graphs defied such a goal when all graphs are considered. We
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believe however that actual communication, social, commercial, political etc networks are

essentially not random.

The very history of their, often gradual, formation can result in a hierarchial clustering.

There is often a further tendency to enhance clustering. If Vi and Vj are both strongly

connected to Vk then Vi and Vj also frequently develop a direct connection.

Physical constraints such as the three dimensional space we live in and the essentially

two dimensional surface of the earth or boards of printed circuits also play a crucial role

along with the need to economize on the total length of communication lines used.

All the above tends to make “clusters in graphs” with relatively loose connections between

them more likely so that two questions Q1, Q2 above can be answered in the affirmative.

The following analogy may be instructive. An outstanding, problem in post genomic

biology is to predict the folding of proteins given their known amino acid sequence. While

natural “native” proteins almost instantaneously fold into their functional three dimensional

form, artificially constructed, random, sequences do not. It is believed that specific smooth

“energy landscapes”[3, 4] help guide the system to its correct folded form - in nature and

in simulations. This is reminiscent of the present problem where methods geared to specific

“Real Life” networks with a presumed tendency for clustering are advantageous.

How can we efficiently search for such patterns?

We can ask for the number of paths in the graph of length s connecting a vertex Vi to

itself or Vi to Vj. By “feeling out” larger and larger region (as s increases) we can tell if Vi

belongs inside a cluster and if Vi and Vj are distant in the sense described above. We will

elaborate on a simple approach for achieving this in Section II below.

Bringing vertices in a “cluster” into close spatial proximity can help in identifying these

clusters. This can be achieved in a dynamical approach in which we model the vertices Vi

by moveable point masses at ~ri(t). Attractive “forces” are postulated between any pair of

points which are connected in the original graph. Possible implementations of this general

approach are discussed in Section III, constituting the main novel part of this paper.
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II. THE NUMBER OF RETURNING PATHS AS A TEST FOR “CLUSTERING

IN GRAPHS”

Imagine an actual physical model of the network where each edge is replaced by a 1Ω

resistor. The electrical resistance between two nodes (or between two groups of vertices

which are separately shorted) nicely models the “distance” between these nodes (or the two

groups) as defined in Q2 above. The laws of adding resistances in series and in parallel

imply that the resistance, like the “distance”, increases the longer the paths on the graph

connecting the two nodes are, and also decreases with the number of such connecting paths.

Instead of using this analog computation we can, by using powers of the connectivity matrix

C, trace out the evolution in s steps of messages sent from each node to all its neighbors.

In fact the i, j elements of Cs; namely (Cs)ij equals the number of paths comprised of s

connected edges which start in Vi and terminate in Vj. In particular (Cs)ii is the number of

paths returning to Vi in s steps.

When raised to a high power (smaller than n) C, like any symmetric real matrix tends in

general to simplify considerably [9]. Let λ1 . . . λn be the n real eigenvalues of C in descending

order and ~V1 . . . ~Vn the corresponding orthonormal n eigenvectors. The columns ~Cs of Cs

become all proportional to ~V1 with a factor representing the projection of ~V1 on the i-th

column of C:

(~Cs)i ∝ (~Ci · ~V1)~V1 (1)

and likewise for the rows. Upon further multiplication by C, Cs gets then multiplied by λi.

For the special case when all vertices in C have the same valency v (i.e. each is connected

to v others) λi = v and

V +
i =

1√
n

(1, 1, . . . 1). (2)

While we seek some dilution of information such trivialization should be avoided. Useful

information can be obtained by looking at (Cs)ij at moderate values of s. If i belongs in a

rich heavily connected, “cluster in graph” then with an valency in cluster vcl the initial rise

of (Cs)ij :

(Cs)ii ∼ (vcl)
s for i ∈ cluster (3)

is higher than the initial rise of the same quantity when Vi is a generic vertex located in a
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region of average (v) valency so that:

(Cs)ii ∼ (v)s for i /∈ cluster (4)

with v ≤ vcl.

To partially avoid the degeneration at high s, and gain more information from Cs for

large s, we tried adopting the following strategy. Instead of C2 we use

C̃2 = C2 − diag C2 (5)

Since the diagonal of C2 counts all paths which come back to their origins in two steps, these

paths are omitted in C̃2. Going one more step we consider C̃2 ·C. By subtracting again its

diagonal elements and defining

C̃3 = C̃2 · C − diag C̃2 · C (6)

we omit all paths which retrace in three steps, etc. In general we define

C̃s+1 = C̃s · C − diag C̃s · C (7)

And (C̃s+1)ij is the number of paths from i to j of length s + 1 which have not revisited at

any prior stage the initial Vi[? ], and (C̃s · C)ii is the number of i → i such paths.

While the latter number increases more slowly than (Cs)ii, it still “runs-away” as s →∞
, so that we need to “re-normalize” C̃s at each stage to have each ( ~̃Cs)i column vector be

of unit length. A plot of (C̃s−k · C)ii as a function of s could ideally help “map out” other

clusters in the graph. After staying for some steps in the putative initial cluster C1 in which

i resided we will wander off into a generic part of the graph. There the slower growth rate

(5) will take over. If we can reach in di2 steps a second rich cluster C2 we could after such

number of steps start having again a fast growth rate (3).

However the graph “between the clusters” is still a network. This causes diffusive migra-

tion between two clusters with no sharp arrival times. Also for appreciable s several clusters

may be reached at the same or similar number of steps. These features tend to smooth out

the changes of (C̃s)ii.

III. DYNAMICAL EVOLUTION HIGHLIGHTING NETWORK STRUCTURE.

A basic difficulty in discerning intrinsic graph / network structure is that the connectivity

matrix depends on the labelling of the vertices. The following example clearly illustrates
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this. Let us assume a large subset of vertices in our graph indeed divide naturally into

fairly well-defined clusters C1 with n1 vertices, C2 with n2 vertices etc up to Ck. If we label

our vertices in such a way that all vertices belonging in any one cluster are contiguous, the

connectivity matrix will be “Almost Block Diagonal”.

This is depicted in Fig.(1) where the non zero (unit) entrees of the C matrix are rep-

resented by a dot at the coordinate (ia, ja) and the 0’s by having an empty a × a square

at the point (ia, ja). The n1 × n1, n2 × n2 sub matrices along the diagonal will then be

connectivity matrices for the first, second, etc cluster. By assumption these matrices have a

relatively high proportion of non-vanishing elements. The corresponding darker squares can

thus be visually discerned relative to the background of the lighter more, sparsely populated,

remaining parts of the original C matrix.

This nice feature completely disappears after massive relabelling, i.e. massive joint reshuf-

flings of columns and rows in the matrix C (Fig.(2)). The initial cluster seems to have

disolved and the whole matrix will then have a roughly constant average density of dots

i.e. unit entries looking uniformly grey. Our goal is essentially to reconstruct the original,

convenient “Almost Block Diagonal” form which exhibits the clusters. Its difficulty is exac-

erbated by the fact that the block diagonalization is only approximate and there are many

non-vanishing entries outside the blocks. Also we do not know a priori which size blocks

and how many blocks exist.

The representation of a graph by drawing it in two dimensions also introduces undesired

arbitartrariness reflected in the choice of coordinates (xi, yj) of the points representing the

various vertices. Two different drawings of the same graph may appear completely different

and unrelated.

Such arbitrariness is particularly harmful when we try to reconstruct the clasters by intro-

ducing attractive forces between any pair of points representing a pair of connected vertices.

The subsequent motion of the points does depend on their arbitrary initial placement.

To place the n vertices in a completely symmetric and unbiased manner we need to go

to n − 1 dimensions. The vertices (or the n physical point masses modelling them in our

approach) can be then put at the n vertices of a symmetric simplex inscribed inside the

unit sphere in n − 1 dimensions. Specific coordinates of the n vertices can be constructed

in a simple inductive process indicated in Appendix A. All vertices are equidistant from the
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FIG. 1: Connectivity matrix with the average cluster valency 20% and inter cluster connectivity

valency 3%.

origin; and specifically we chose:

~r 2
i = 1 (8)

using this,(
∑

~ri)
2 = 0 and the equality - due to symmetry - of all ~ri ·~rj for any i 6= j readily

implies:

~ri · ~rj = − 1

n− 1
all i 6= j i, j = 1 . . . n. (9)

The distance between any pair of vertices of the simplex i.e. between any pair of the

representative points at the outset of our proposed dynamical simulation is therefore:

|~ri − ~rj| =
√

2n

n− 1
all i 6= j. (10)
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FIG. 2: Randomly reshuffled connectivity matrix C.

We next endow our system with some dynamics[7]. We introduce a fictitious attractive force

between points corresponding to vertices which are connected in the initial graph of interest.

Thus if Cij 6= 0 we postulate

~Fij(~ri, ~rj) = ζijf(|~ri − ~rj|)(~ri − ~rj)

|~ri − ~rj| . (11)

To be the force attracting the point mass i to the point mass j, in the direction of ~ri − ~rj.

To retain the initial symmetry and avoid any biasing we take the same force law f(r) for

all pairs. The specific shape of f(r) can be tuned to optimize the gradual clustering. In

general f(r) falls with distance is now inoperative In the following we uses constant forces

(f = const).
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The only way information about the specific graph of interest is communicated to our

dynamical n body system is via the overall strengths of the forces ζij. It vanishes if Cij = 0.

For the generalizations considered later and to mimic real networks we allow any ζij ≡ Cij >

1 so that it counts the number and “quality” of connections between Vi and Vj.

We next let our point move according to standard newtonian dynamics:

mi
d2~ri

dt2
= ~Fi =

∑

j

~Fij. (12)

To avoid ”overshoots” and oscillations we add damping via viscous frictional forces:

mi
d2~ri

dt2
+ µi

d~ri

dt
= ~Fi. (13)

Finally we adopt the extreme µi À mi so as to neglect inertial effects and have first order

“Aristotelian Dynamics”:

µi
d~ri

dt
= ~Fi. (14)

The latter is readily discretized for time increments δ:

~ri(t + δ) = ~ri(t) +
δ

µi

~Fi(~ri(t)) i = 1 . . . n, l 6= i l = 1 . . . n. (15)

To preserve the initial symmetry we take all initial mass ( and separately all initial viscosities)

to be equal µi = µ , mi = m. Different masses (and / or viscosities) will arise at later stages

when we treat super graphs with heavy vertices representing initial clusters.

The attractive central forces can be derived from a pair wise potential i.e.:

f(r) = − d

dr
U(r). (16)

And the overall potential energy is then:

U(~r1 . . . ~rn) =
∑

i>j

ζijU(|~ri − ~rj|). (17)

The constant forces alluded to above arise when we have linear pair-wise potential or fixed

tension wires connecting the points[? ]. The possible equilibrium “fixed points”of our

dynamical system namely those for which

d~ri

dt
= ~Fi = 0 (18)

for all i are then stationary points of U(~r1 . . . ~rn).
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With only attractive forces or potentials present our n point system eventually collapses

towards the origin. This is readily seen as the scaling

~ri → λ~ri (19)

with λ < 1 will obviously decrease the U(~r1 . . . ~rn) of equation (17) for any set of ~ri.

A collapse of all n points happening before the vertices belonging to “clusters in the

graph” have separately concentrated in different regions defeats our goal of identifying the

latter clusters.

To avoid the radial collapse we constrain ~ri(t), to be at all times on the unit sphere:

|~ri(t)| = constant = 1 all t ≥ 0. (20)

To incorporate this we supplement eq.(15) by a length renormalization:

~ri(t + δ) → ~ri(t + δ)

|~ri(t + δ)| (21)

to be performed following the operation (15) at each step of our evolution. The constraint

(20) amounts to introducing normal (radial) reaction forces which cancel the radial compo-

nents of any of the forces ~Fi, leaving us with only the tangential parts:

~F T
i ≡ ~Fi − (~Fi · ~ri)~ri. (22)

While the above avoids the radial collapse, the residual tangential forces can still initiate a

collapse at some point on the unit sphere.

The basic conjecture we make is the following: “After a sufficiently long time T (or suffi-

ciently many steps s = T/δ) has elapsed so that any point moved on average an appreciable

distance away from its initial location |~ri(T )− ~ri(0)| ≥ a ≈ 1 geometrical clusters of points

tend to form. The points in each geometrical cluster correspond, to a good approximation,

to the original vertices in a “cluster of the graph” which these points represent.”

In the following we motivate this conjecture, and test it numerically.

We recall the definition of a cluster in the graph as a subset Cl of nl vertices with a

higher number of connections between them than the average number of connections with

“external” vertices, which are not in the cluster. At t = 0, the points representing any

subset of p vertices out of the n vertices in the graph reside at the p vertices of a (p − 1)
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dimensional symmetric simplex. All together there are




n

p


 such “faces” of our original

n− 1 dimensional simplex.

To most clearly illustrate our point let us assume an “ideal graph cluster” with p = nl

vertices so that in first approximation we neglect forces attracting members of the cluster

(more precisely point masses representing vertices in the cluster) to “outside” points. Had

we also omitted the constraint (20) then the forces acting between the nl points of the cluster

Cl would initially and hence at all subsequent times, be restricted to the corresponding nl−1

dimensional face. Repeating the argument made originally for the full set of n vertices, a

collapse of these nl points into some point inside the nl simplex (i.e. on the nl−1 dimensional

face) is guaranteed. With the constraint (20) enforced, the set of nl points will still collapse

but now not to a point on the nl−1 simplex but to a point on the “spherical nl−1 simplex”

which is the projection of the nl − 1 simplex on the unit sphere. The point of common

clustering need not be at the geometrical center of this spherical nl − 1 dimensional face.

However unless the cluster in question is very asymmetric in its internal connections, it may

not be too far from it.

Let us next turn on the remaining fewer forces pulling members of the cluster due to

external vertices, i.e. towards points initially residing outside this face. Such pulls may shift

the location of the clustering point away from the nl − 1 dimensional spherical “face”. It

is unlikely that it will disrupt completely the clustering of the vertices Vi ∈ Ci belonging in

the cluster.

We believe that the tendency to cluster will persist even in the more general case when

the clusters are not so sharply defined.

Let us focus on one particular vertex Vi located at t = 0 at ~ri , one of the n vertices of the

n− 1 simplex vertices. Among all the




n

nl


 subsets of nl vertices, i.e. nl − 1 dimensional

faces, a subset of




n− 1

nl − 1


 shares the specific Vi. Stated differently,




n− 1

nl − 1


 different

nl−1 dimensional faces do intersect at the Vi considered i.e. n−1 edges, (n−1)(n−2)
2

triangles,

(n−1)(n−2)(n−3)
3!

tetrahedrals and so on. Furthermore each of the triangles includes two of the

n− 1 edges impinging at Vi, every tetrahedra contains three of these edges, etc.
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Let us next assume that among all such




n− 1

nl − 1


 simplexes there is a particular one

which we denote by Sl so that the point in question ~ri , has a maximal number of forces

acting in its direction (as compared with the number of forces acting on the direction of any

one of the other simplexes). This is the reflection in our dynamical model the fact that the

vertex Vi belongs in a cluster Cl i.e. has more connections to Vj ∈ Cl than to vertices in any

other subset of nl vertices.

It is obvious that in the initially symmetric situation the point ~ri will then start moving

in the direction of that specific nl− 1 dimensional face since the force in its direction will be

maximal. The motion will not be exactly in this hyperplane as Vi may have some external

connections and consequently there will be forces on the mass point ~ri in other directions.

However since the largest force component is along this direction so will be also the largest

initial displacement δ1(~ri) = ~ri(δ) − ~ri(0) ∝ ~Fi. This motion will then be the first small

step towards the formation of the physical cluster of the points representing Cl.

At t = 0 all vertices start moving. If all (or most) of the nl vertices on the simplex (face)

in question share this same feature of Vi then all (or most) of the nl points will tend to

migrate away from the initial nl vertices of the simplex in question and move toward its

interior. Once the representative points start to cluster on or near the corresponding nl − 1

dimensional spherical face the non-linear aspects of the many-body dynamical evolution

come into play. These will tend to enhance and accelerate the clustering.

As the group of points start to come closer together the average distances |~ri − ~ri′ | with

(Vi, Vi′) ∈ Cl decrease. If the attractive forces between them become stronger this accelerates

the clustering of the points which started to cluster. Since in our present application we

used constant, distance independent, f(r), this is not operative here. We still have the very

important additional effect namely the more coherent pull on “straggling vertices” by the

other vertices belonging to a strong cluster. ( “Straggling, or straying vertices” are those

which due to “accidental” connections to some different group of vertices start moving in a

different direction, than that of the face in question.)

The initial forces acting on any vertex have an angle of 60o between any pair. However

because of our constraint of staying on the sphere we need to consider only the projection

on the n− 2 hyperplane tangent to the sphere at the vertex Vi, say, in question. After this

projection the n − 1 edges emanating from Vi span the n − 2 dimensional hyperplane just
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in the same symmetric manner as the n unit vectors ~ri span the original n− 1 dimensional

simplex. Hence at eq.(9) the angle between members of any pair of the effective tangential

forces is

cos [θij[projected]] = − 1

n− 2
. (23)

Thus if Vi was connected to all the remaining n− 1 vertices in the original graph the sum of

all the (tangential!) forces acting on it would vanish. In reality the valency of Vi, vi = total

number of vertices directly connected to it is, much smaller than n − 1. Still the almost

orthogonal vi forces acting on it will thus tend to add in quadrature. The same a-fortiori

holds for the viCl
forces directed to the face representing the cluster Cl. ( viCl

is a partial

i-Cl valency, namely the number of vertices in Cl connected to Vi).

The initial force component along the nl − 1 dimensional face is then:

~Fi{i∈Cl}(t = 0) =
∑

j∈Cl

~Fij(t = 0) ∝ [viCl
]1/2 (24)

Assume however that after some time most points corresponding to the putative cluster,

and, in particular, the viCl
points in the cluster Cl connected to Vi, have already bunched

together on the surface of the sphere. The various forces exerted by these viCl
points on Vi

will now be almost parallel and instead of (24) we will have

~Fi{i∈Cl}(t > t0) =
∑

j∈Cl

~Fij(t > t0) ∝ viCl
. (25)

Hence the resulting force will be considerably enhanced if viCl
>> 1!

If the vertices in the original graph had on average small overall valency then viCl
could

happen to be small - say O(2 − 3). The
√

viCl
enhancement of (25) relative to (24) would

then be minimal. Also viCl
could be smaller than the number of connections that Vi happens

to have with points in some random face with nc′1 = nl − 1 dimensions. The vertex Vi will

then “wander off” at t = 0 in the direction of this face rather than that of the “correct” face

corresponding to the cluster Cl. We can avoid such situations and enhance the coherence

effect discussed above by replacing the original connectivity matrix by an appropriate power

(Cs or C̃s defined in Sec. II above) where the overall valencies (and in particular valencies

pertaining to cluster) are (particularly) strongly enhanced.

Note that an “error”due to an initial wandering off of Vi in the direction of some random

face which corresponds to no cluster in the graph, is corrected by the very clustering which
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is assumed to occur. The other points in the “random” face will, by assumption, tend

to migrate out of this face into other faces where these points can more efficiently cluster

(physically). Finding no nearby points on the wrong face the “straying” vertex Vi in question

is likely to be pulled back into the original cluster Cl (or to another cluster which formed in

the meantime and to which Vi is more strongly connected).

Thus our dynamical evolution process is not just motion of n points on the unit n − 1

dimensional sphere, rather we can view it as a competition between the putative different

(physical!) clusters for additional members (points). In this ongoing “tug of war” clusters

with stronger internal connectivity are likely to “win over” farther members and form first.

Once the points corresponding to a cluster in the graph have “bunched” close together

they become effectively one dynamical unit - a “supervertex”. Not only will all the points

pull coherently external points but also the converse naturally holds: the clustered points

will tend to respond coherently as one dynamical unit to an external force. Thus assume

that we try to “pull away” one member point. Due to its many connections to the other

members of the cluster the point in question will strongly pull on those connected to it. The

latter points in turn will pull on further points in the cluster etc and eventually the whole

cluster will move in response to the external force.

The actual emergence of the physical clusters can be readily ascertained. Once |~ri − ~rj|
is smaller than a prescribed small number ε, and further more persist in staying that closed

for some number sp of steps the pair of points are “merged” into one point, at (~ri + ~rj)/2.

(Actually we need at this point to project again (~ri + ~rj)/2 onto the sphere.) In further

evolution the force acting on the merger point is the sum total of all the forces acting on ~ri

and ~rj . Also the resulting point should be endowed with twice the viscosity and twice the

inertia µi∪j = µi + µj and / or mi∪j = mi + mj. This new, doubled up, point represents

a new graph derived from the original by identifying Vi and Vj. It has n − 1 vertices and

its connectivity matrix has the same elements Cgg′ when both gg′ differ from either i or j.

The new (compound) vertex (Vi∪j) is now connected to all vertices which were connected to

either i or j.

We can keep on merging, using at each step the center of mass of the points in question

~rcm(i,j) ≡ mi~ri + mj~rj

mi + mj

(26)

as the merge point. We add up the masses and viscosities of the merged points and keep
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the connections to all vertices/points presently existing.

Ideally this process would yield, after a reasonable number of steps s, k “supervertices”

corresponding to the k blocks {nl1 × nl1 , nl2 × nl2 , . . . nlk × nlk} in the properly ordered

original C matrix of Fig. 1. The off-diagonal element ll′ will be here the total number of non

vanishing unit entries in the original matrix C in the nl×nl′ rectangle at the “intersection”

of the Cl, and Cl′ blocks. We could now repeat a similar dynamical procedure for the k

“supervertices” This is in fact what the above algorithm is doing anyway in a relatively

smooth and continuous manner. Indeed, even prior to the actual act of merging, the set of

points in a cluster act coherently as one unit.

Instead of merging pairs of close by points, we can identify various physical clusters with

some minimal number of points and merge those as above.

The dynamical evolution described here forms clusters of all sizes: small ones with few

members, larger ones which may include all or parts of smaller clusters and the one big

supercluster containing all n vertices.

In structure formation in three dimensions, creation of small clusters requires the particles

forming the cluster to travel for shorter distances than in the case of bigger clusters. Due

to the peculiar geometry of the initial symmetric in n− 1 dimensional symplex described in

appendix A, this intuition does not carry over. Formation of any cluster requires roughly

the same distance to be covered regardless of the size of the cluster. Hence we are not

guaranteed by essentially kinematic reasons that the smaller clusters will form first - en

route to the bigger clusters [? ] which is the desired scenario for our purposes here.

How should we tune the force f(r) in order to help achieving such a scenario? If f(r) '
c/rα with large α , small differences in the distances will have large effect, (note that for the

gravitational force in n− 1 dimensions, α = n− 2). Too strong a rise for r < rinitial and fall

for r > rinitial may however lead to accidental clustering of some small groups. In particular

it may diminish the effect of the corrective mechanism described above of via the coherent

pull of the elements of the cluster on straying elements.

The following procedure prevents complete clustering but allows formation of clusters

with higher than average internal connectivity. We introduce in addition to the above

attractive force between vertices Vi and Vj with Cij 6= 0, repulsive forces when Vi and Vj are
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not connected:

Gij = g(~rij)
(~ri − ~rj)

|~ri + ~rj| ≡ Fij(r) for Cij = 0. (27)

Again this can be derived from a repulsive W (r) potential.

Since in general we have many more unconnected vertices in a graph with large n, the

repulsion can be weak relative to the attraction. Let us assume that the average valency is

v. If all n points would physically cluster we have O(n2/2) repulsive interactions W (a), with

a the size of the clustering region, and O(nv/2) attractive interacter V (a). Thus it suffices

to have

W (a) ≥ v

n
V (a) (28)

in order to prevent forming complete clustering into one big supercluster. (The constraint

|~ri(t)| = 1 is still necessary to prevent vertices from being pushed to infinity!)

Assume that a putative new member is trying to join a cluster Cl, in which its valency

vi{C1} is higher than the average. To facilitate joining, we need to satisfy the following

condition:

W (a) ≤ vi{C1}
n1

V (a). (29)

Since vi{C1} ≥ v, and further nl << n, we have a sizeable range of W (a)/V (a) for which

smaller clusters but not very large ones can first form. By gradually phasing out the repulsive

forces once the smaller clusters have formed, we can proceed to forming bigger clusters etc.

We note that repulsive forces tend to move to antipodal points on the sphere groups of

points which are “distant” from each other in the graph theoretic sense of question 2 in the

introduction.

IV. SPECIFIC APPLICATIONS

We applied the above approach to the problem of cluster identification in the 100-nodes

network represented by the connectivity matrix C of Fig.(1). This matrix consists of seven

clusters with randomly created internal connections with valency 20%. These clusters have

been randomly interconnected via a background valency of 3%. To simulate a real-life sit-

uation of networks with unknown structure (topology) we randomly permute the rows and

columns of the matrix C obtaining the reshuffled matrix C ′ shown in the Fig.(2). Next

we apply our algorithm for clusters reconstruction using a combination of attractive and
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repulsive forces in n − 1 = 99 dimensional space. The vertices of the 100-simplex were

allowed to move under the influence of the forces on the 98-dimensional hyper-sphere in

99-dimensions. After a number of steps (about of 100) we analyzed the mutual distances

between the vertices of the simplex and grouped neighbors which are close to each other

(within a relative distance of order 0.1) into separate clusters. The new connectivity matrix

is shown in Fig.(3). We see the seven “big” clusters of the matrix C on a background of few
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FIG. 3: Cluster connectivity matrix for reshuffled connectivity matrix C.

small additional clusters due to the random (but still rather high) cluster inter connections.

The procedure identifies not only the cluster structure of networks but numerates and tab-

ulates all the nodes in each cluster. We father note that the distances in Fig. (3) between

the different clusters do - unlike in the original Fig. (1) - reflect the actual “graph theory”
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distance between them.

APPENDIX A

Some geometrical aspects of the n−1 simplex and its p−1 dimensional sub-simplex faces

are relevant to our dynamical evolution. Most such features can be derived without utilizing

any specific coordinate representation.

The fundamental relation

~ri · ~rj = − 1

n− 1
all i 6= j i, j = 1 . . . n (A1)

was derived above by using (
∑

~ri)
2 = 0 and symmetry. It allowed us to deduce the length

of any edge

|~ri − ~rj| =
√

2n

n− 1
all i 6= j (A2)

such edges can be viewed as 1-dim 2 point subsimplices.

We have also triangles, namely 2-simplices, forming 2-dim “faces”/edges etc,




n

p


 dif-

ferent p− 1-simplices etc.

Let rp denote the radius of the sphere circumscribing the p − 1 simplex and dp the

distance to its center from the origin (namely the center of the original n − 1 simplex).

Clearly d2
p + r2

p = 1.

Let ~ri1 . . . ~rip be the p unit vectors of the p simplex. All the ip are different and there are


n

p


 such possible subsets of the n original ~ri. The vector from the origin to the center of

simplex is:

~dp = (~ri1 + ~ri2 + . . . ~rip)/p (A3)

Hence using again (A1) we find:

dp =

√
~d 2
p =

1

p

√
p− p(p− 1)

n− 1
=

√
n− p

(n− 1)p
. (A4)

And

rp =
√

1− d2
p =

√
n

n− 1
· p− 1

p
, (A5)

rp is the distance from vertex of the p simplex to its center. Except for very small p’s

(representing “tiny” clusters) all rp are O(1) so formation of such clusters would require the

vertices to travel the same distance as in the formation of bigger clusters.
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The actual angular separation between ~ri in the p simplex and rp, the vector from the

origin to its center is given by:

θp = arccos (dp) =
π

2
− arcsin (rp) ≈ π

2
−

√
n− p

(n− 1)p
. (A6)

Two p simplices can differ by just one, two . . . q, . . . or p−1 points. The distances rq
p between

the centers of two neighboring p simplices differing by q vertices (and with p − q common

vertices) grow with q for fixed p, as follows.

The vector connecting the two centers is:

~dp =
1

p

( q∑

i=1

~ri −
q∑

i=1

~rli

)
. (A7)

With the sets {~ri},({~rli}) denoting the q points in the first (second) p simplices which are

not shared by the two. The common ~ri’s cancel in the difference, and do not contribute to

the distance rq
p. Using (A7) and ~ri · ~rj = −1/(n− 1) we find:

r2
p =

√
(~dq

p)2 =
1

p

√
2q +

2q

n− 1
. (A8)

Hence the angle between ~r (1)
p the ~r (2)

p vectors to the centers of the two simplices is given by:

θq
p = 2 arcsin

(
rq
p

2dp

)
= 2 arcsin




√√√√
(

n

n− p

)
q

2p


. (A9)

The last equation displays a nice feature. There is a small angular distances between the

centers of the (spherical) faces corresponding to two p clusters which differ by a small fraction

q/p of their vertices. The angular separation grows once q ≈ p ¿ n to θq
p ≈ π/2.

For our simulations we need an explicit representation of ~ri. Assume we know the latter

for the n− 1 simplex (in n− 2 dimension) denote them by ~ϑ1 . . . ~ϑn−1 with each ~ϑ an n− 2

vector with known components:

~ϑj = ~ϑj1ê1 + . . . ~ϑj,n−2ên−2 (A10)

with êl the unit vector along the l-th axis. When n− 1 → n we choose

~rn = ên−1

~ri = λn
~ϑi − 1

n− 1
ên−1 i = 1 . . . n− 1. (A11)

The normalizing factor λn =
√

1− 1/(n− 1)2 ensures |~ri| = 1, given that |~ϑi| = 1. Thus,

starting with an one simplex with x1
1 = 1; x1

2 = −1, we inductively generate any n − 1

simplex.
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Abstract

A general novel approach mapping discrete, combinatorial, graph-theoretic problems onto “phys-

ical” models - namely n simplexes in n−1 dimensions - is applied to the graph equivalence problem.

It is shown to solve this long standing problem in polynomial, short, time.
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INTRODUCTION

A graph G consists of n vertices Vi connected by edges Eij. It is described by a connec-

tivity matrix C with:

Cij = Cji = 0, 1 (for (dis)connected Vi and Vj i 6= j = 1, · · · , n)

Cii = 0 (1)

Vertex relabelling i → p(i) leaves G invariant but changes C according to

C −→ C ′ = P T CP (2)

with P an orthogonal matrix with only one non-zero element in each row i and column

j = p(i), which represents the above permutation

P = δ(j,p(i)) (3)

The graph equivalence problem is the following: “Given C and C ′, how can we decide, in

time which is polynomial in n, if both correspond to the same topological graph G or to

different graphs?, or stated differently, does a permutation matrix P for which Eq.(2) holds

exist, and what is this P matrix?”

Exhaustive testing of all n! permutation is impractical even for moderate n. A more sys-

tematic search of P performs just those transpositions which enhance an “overlap” function

say

trCT C ′ =
∑

ij

CijC
′
ij (4)

However the changes in C (and in trCT C ′) due to any permutation is finite. There is no

algorithm for systematically enhancing trCT C ′, as subsequent transpositions may undo the

improvement due to previous permutations.

Our basic suggestion is: Instead of using discrete, large changes of say just two elements

in a transposition (i ↔ j), we modify, in each step, all elements by small amounts.

Such “continuous” changes seem impossible: in the strict formal approach there are no

“continuous permutations”.
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THE DYNAMICAL MODEL FOR SIMPLEX DISTORTION

We use a symmetric n simplex (in n − 1 dimensions) to represent our graph. The “ab-

stract” vertices Vi of G (or C) are mapped into the geometrical vertices ~ri , i = 1, · · · , n
of the simplex. The symmetric configuration with all |~ri − ~rj| i 6= j = 1, · · · , n, equal, is

the starting point of our algorithms.

The motion generated by the dynamics, was designed to distort the simplex by shift-

ing its vertices from the symmetric initial positions. The distorted simplex then reveals

characteristic features of the graph G [1].

The original aim of the distortion algorithm was to find groups of vertices in G with higher

than average mutual connectivity, and asses the distances between the various clusters in

the graph.

To this end attractive (repulsive) interactions were introduced between fictious point ob-

jects at ~ri and ~rj when the corresponding vertices Vi and Vj are connected (or disconnected)

in G. We use first order “Aristotelian” dynamics:

µ
d~ri(t)

dt
= ~Fi(~ri(t)), (5)

with forces ~Fi which derive from potentials:

~Fi = −~∇(~ri){U [~ri, · · · , ~rn]}, (6)

U =
∑

i>j

Ua(|~ri − ~rj|)Cij +
∑

i>j

Ur(|~ri − ~rj|)(1− Cij), (7)

Ua(r) (Ur(r)) are attractive (repulsive) pair-wise potentials.

By a proper tuning of the latter- which can even be modified as a function of “time” - we

can physically cluster at separate locations groups of points representing strongly (internally)

connected clusters in the graph G.

To avoid collapse towards the origin (or a “run-away” to infinity) if Ua (or Ur) dominates,

we force ~ri(t) to stay, at all times, on the unit sphere:

|~ri(t)| = 1 all t > 0. (8)

The graph characterization (G.C.) and graph equivalence (G.E.P.) problems are very closely

connected. If we could find (in polynomial number of steps!) a set of real numbers

ρ1, ρ2, · · · , ρm that would completely characterize a graph G then the G.E.P is readily solved.
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All we need to do is to compute for C (C ′) these numbers {ρk} ({ρ′k}), order the ρk and ρ′k

sets separately and compare them.

The set of eigenvalues (λ1, · · · , λn) of the connectivity matrix are certainly invariant under

relabelling. While this set encodes a rich body of information of graph theoretic interest, it

fails to completely characterize graphs[2].

An alternative and natural simple variable helping characterize connectivity matrices is

the mutual entropy (see, for example [3]). Suppose the connectivity matrix C has been

normalized so that
n∑

i,j=1

Cij = 1. (9)

Pi =
∑n

j Cij could then be considered as the probability that Vi and Vj are connected. The

corresponding entropy

H(row) = −
n∑

j=1

Pi log Pi, (10)

could be considered as a measure of the uncertainty of the rows connection for the given

network. The amount of uncertainty for the connection of the column nodes given that the

row nodes are connected is

H(column|row) = −
n∑

i,j

Cij log Cij −H(row). (11)

As a result the amount of mutual information gained via the given connectivity of the

network is

I(C) = H(row) + H(column)−H(column, row), =
n∑

i,j

Cij log (Cij/PiPj). (12)

where

H(column, row) = −
n∑

i,j

Cij log (Cij). (13)

Due to the double summation and the symmetry of the connectivity matrix I(C) does not

depend on the vertex relabelling and is a permutation invariant measure for the connectivity

matrix.

Calculations of the mutual entropy for two connectivity matrices provides an easy way

to distinguish between these corresponding different graphs. If, however, the entropies are

the same, the more detailed approach below is used. Amusingly we found that the entropy

is already sufficient to distinguish between the lowest cospectral graphs (see, for example [4]

and references therein).

38
39



The distances between the various vertices

rij(t) ≡ |~ri(t)− ~rj(t)| (14)

vary in our original algorithm as a function of time away from the original common value:

rij(0) = |~ri(0)− ~rj(0)| = a all i 6= j = 1, · · · , n (15)

Also in identical simulations of the dynamical evolution, the sets of relative distances

computed for C and C ′, should be the same if C and C ′ are equivalent:

{rij(t)} = {r′ij(t)} (16)

One permutation of n elements (namely that which brings via Eqs.(2) and (3) C into C ′)

should yield:

|~rp(i)(t)− ~rp(j)(t)| = |~r′i(t)− ~r′j(t)| (17)

It is straightforward to verify (16) and then using (17) recover the permutation i → p(i).

In essence the idea of the present algorithm is to use the distortion of the simplex S(0) →
S(t) {i.e. ~ri(0) → ~ri(t)} generated via the dynamics of (repulsion) attraction between

(dis)connected vertices in G to bring out an “intrinsic shape” of the graph.

Initially all vertices were at equal distances[5]. All the information pertaining to the

graph was encoded in the interactions of Eq.(7).

After enough evolution steps, each vertex moves appreciably away, namely by

|~ri(t)− ~ri(0)| ≈ a/2 (18)

from its initial position. The information on the specific graph G reflects in the geometrical

shape of S, i.e. the set of distances,

|~ri(t)− ~rj(t)| i 6= j = 1, · · · , n. (19)

Vertices which are near in a graph theoretic sense, namely for which there are many, short,

connecting paths in the graph move closer together. (A short path consists of a small # of

consecutive edges which starts at Vi say and terminates at Vj). Like wise vertices which are
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far in a graph theoretic sense i.e. have fewer and longer connecting paths will tend to move

further away.

In our earlier work[6] we sought to identify “clusters in the graphs” namely have the

points corresponding to a subset {Ci} of vertices in the graph which have relatively strong

mutual, internal, connectivity, collapse to a single point.

For the present purpose we need (and should!) not pursue the evolution that far, as by

then the graph simplifies and some of the inter-cluster details are lost. Rather we need to

stop “Half-Way”: after Eq.(19) holds and yet no cluster has completely collapsed.

Note that in n− 1 dimensions all the n(n− 1)/2 distances |~ri(t)−~rj(t)| are independent,

apart from triangular inequalities of the form

|~ri(t)− ~rj(t)| ≤ |~ri(t)− ~rk(t)|+ |~rk(t)− ~ri(t)|. (20)

Jointly these distances specify the geometric shape of S.

The mapping of the n(n − 1)/2 bits of information: Cij = 0 or 1, via our dynamic

evolution, into the set of n(n − 1)/2 distances, is highly non-linear. The fact that we have

n(n−1)/2 distances (rather than just n eigenvalues) makes the former more likely to specify

the graphs.

Further we note that the time t when the comparisons are made and the attractive and

repulsive interactions in Eq.(7) above are free parameters and functions. Hence we can

repeat the above graph comparisons for many values and/or many functions Ur(ρ), Ua(ρ),

making the significance of a successful match extremely high.

If many of the rij(t) {and r′ij(t)} are degenerate our ability to resolve graphs will be

diminished. However such degeneracies must stem from some symmetries in the graphs and

corresponding connectivity matrices. Once these symmetries are identified, the number of

independent Cij (or C ′
ij) and the task of comparing them will be accordingly reduced.

We apply the above approach below, demonstrating its power and versatility.
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THE CONVERGENCE AND COMPLEXITY OF THE DISCRETE MODELINGS

OF THE DYNAMICAL EVOLUTIONS

We follow the dynamics of the vertex shifts in Eq.(5) by discretizing the first order

equations:

~ri(t + δ) = ~ri(t) +
δ

µ
~Fi(~re(t)) (21)

with δ a small time increment.

Since ~ri, ~Fi, are n − 1 dimensional vectors Eq.(21) represents O(n2) equations for the

relevant components. Each force component Fiα is a sum of vi force components with vi

the valency of the vertex Vi i.e. the # of vertices connected to it. Hence each step in (26)

involves n2v/2 calculations with

v =
∑

i=1

vi/n (22)

the average valency in the graph.

Let us assume that we need to repeat the process of iterating the dynamics namely (26)

or (27) for s steps in order to achieve the goal(s) of the algorithm(s). These goals vary for

the various problems of interest. For cluster identification we need the points representing

clusters in the graph to physically converge into definable separate regions.

For graph characterizations and comparison we need a fewer number of steps, sufficient

to make the distances rij(t) vary considerably away from their original common value.

The total number of computations involved is N = O(n2s) if v is finite and n independent

or N = O(n3s) for the extreme case when v ≈ n. For N not to be polynomial in n we need

that s will grow faster than any power of n.

In principal one can envision many types of chaotic dynamical evolution where such large

number of steps is indeed required.

This is not the case for the first order equations considered here:

~̇ri =
~Fi

µ
= −

~∇ri
(U)

µ
, (23)

where the system consistently moves, along the steepest descent, to a minimum of U , the

potential energy.

If we have a complicated “energy landscape” the system can be trapped in any one of

the many local minima, a feature which accounts for the difficulty of protein folding[7],
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neural nets and spin glass problems[8]. The need to keep the same deterministic evolution

for S and S ′ representing G and G′ in the first “distortion” algorithm, excludes in our case-

the possibility of introducing some stochastic noise to extricate the system from a local

minimum.

Fortunately our problem does not allow for many minima. Thus let us fix the locations

of all ~ri i = 1, · · · , n− 1 except ~rn ≡ ~r. The velocity ~̇r(t), is dictated by

U(~r) =
∑

i=1

Cni
UA(|~r − ~ri|) + (1− Cni

)UR(|~r − ~ri|) (24)

Assume we have some local equilibrium at ~r0. Locally, in the neighborhood of ~r0, we can

use the variables ρi ≡ |~r − ~ri| i = 1, · · · , n − 1, instead of x1 · · ·xn−1 the n − 1 Cartesian

coordinates of ~r. The conditions for an extremum ~∇U(~r) |~r=~ro then require that

∂

∂ρj

UA(ρj) |ρj=ρ
(o)
j

= 0; or
∂

∂ρj

UR(ρj) |ρj=ρ
(o)
j

= 0 (25)

Thus for generic monotonic UA, UR, we have no extrema inside the region.

An absolute minimum obtained at the boundary.

APPLICATIONS OF THE METHOD

To demonstrate the power of our approach we considered a graph with 100 vertices each

of which is randomly connected to seven others. The corresponding connectivity matrix C

is shown in Fig.(1)). Random reshuffling transforms the C into the matrix B of Fig.(2)

Next we applied our algorithm using a combination of attractive and repulsive forces in

n− 1 = 99 dimensional space. The vertices of the 100-simplex were allowed to move under

the influence of the forces on the 98-dimensional hyper-sphere in 99-dimensions. After a

number of steps we analyzed the distances between pairs the vertices of the two simplexes.

We found perfect correspondence between the distance matrices. We also readily show the

permutation matrix which maps one distance matrix on to the another. Applying the latter

to the matrix B reproduces exactly the original connectivity matrix C (Fig.(1)).

S.Nussinov would like to thank Zohar nussinov for a crucial comment regarding the

advantage of going to higher dimensions to overcome frustrations and alleviate constraints.
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FIG. 1: Connectivity matrix for 100 vertices graph with 7 random connections for each vertex.
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[3] A. Rényi, “Probability Theory”, North-Holland Publishing Company - Amsterdam - London,

and American Elsevier Publishing Company, Inc. - New York, 1970.

[4] C.D.Godsil, D.A. Holton and B.D. McKay, “The spectrum of a graph”, Lecture Notes in Math.

622, Springer-Verlag, Berlin, 1977,91-117.

[5] For a specific convenient coordinate choice for the n vertices see Appendix of [6].

[6] V. Gudkov, J.E. Johnson and S. Nussinov, arXiv: cond-mat/0209111 (2002).

4445



[7] J.D. Bryngelson and P.G. Wolynes, J. Phys. Chem. 93, p. 6902 (1989).

[8] M. M’ezard, G. Parisi and M.A. Virasoro, “Spin glass theory and beyond”, World Scientific,

Singapore, 1987.

4546



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix C
 
 
 
 
 
 
 
 
 
 
 
         47 



A Novel Approach Applied to the Largest Clique Problem

Vladimir Gudkov∗

Department of Physics and Astronomy

University of South Carolina

Columbia, SC 29208

Shmuel Nussinov†

Department of Physics

Johns Hopkins University

Baltimore MD 21218

and

Tel-Aviv University,

School of Physics and Astronomy

Tel-Aviv, Israel

Zohar Nussinov‡

Institute Lorentz for Theoretical Physics,

Leiden University

POB 9506, 2300 RA Leiden,

The Netherlands

(Dated: January 27, 2005)

46
48



Abstract

A novel approach to complex problems has been previously applied to graph classification and

the graph equivalence problem. Here we apply it to the NP complete problem of finding the largest

perfect clique within a graph G.

PACS numbers: 89.75.Hc, 89.90.+n, 46.70.-p, 95.75.Pq
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INTRODUCTION

In a novel dynamical approach the n vertices of a graph G are mapped onto n physical

points located initially at equal distances from each other forming a symmetric n simplex

in n − 1 dimensions. Attractive/repulsive forces are introduced between pairs of points

corresponding to connected/disconnected vertices in the original graph G. We then let the

system evolve utilizing first order Aristotelian dynamics[1–3]. We tune the relative strength

of repulsive and attractive forces to be v/n with v the average valency i.e. average number

of vertices connected to a given vertex so as to have no net average repulsion/attractions.

We found, that as the system evolves various physical clusters of points tend to form.

These physical clusterings reveal clusters (or imperfect cliques) in the graph - namely groups

of vertices with a larger than average mutual connectivity. Also the matrix of distances

Rij(t) between the various points ~ri(t) and ~rj(t) is characteristic of the graph topology:

points corresponding to vertices which are “close in the graph” namely have (relatively)

many, short, paths connecting them will move closer together and conversely, points which

are “far in the graph” tend to move apart.

The distance matrix and clusters are important graph diagnostics. In particular the first

allows us to solve easily the graph equivalence problem namely to decide if two connectivity

matrices Cij and C′ij correspond to the same topological graph and if they do to find the

relabelling of vertices which makes C and C′ identical.

These results are of considerable practical importance. Still neither of the above problems

belongs in the special class “NP complete” problems. The latter consists of problems such as

the travelling salesmen problem and the satisfiability problem for which a putative solution

can be readily checked in polynomial time yet no polynomial solution method is presently

known[4].

Many of these problems can be phrased in terms of graphs as the task of finding some

specific graph g inside bigger graph G. Further, all these problems which superficially seem

very different are at a basic level ,equally difficult: If a method of solution in polynomial

time is found for one such problem then all the problems should be solvable in such time

by essentially the same method. Conversely if we can prove that just one NPC problem

necessarily require, non-polynomial time for its solution, the same holds for all of them. Two

of us have recently conjectured[3] that a new variant of our approach namely of dynamically

4850



docking rigid simplexes s and S representing g and G can solve the “g inside G” problems.

Here we wish to present the first concrete application of the original, point translation or

single simplex distortion algorithm (SDA), to an NPC problems namely that of finding the

largest perfect clique in G.

To most clearly illustrate the essence of the problem we consider the “students in dorm”

example used in the general description of the Clay institute prize offered for resolving

P = NP problem[5]. We have N = 400 students out of which we need to select n = 100

which can live together in a dorm, subject to a very long list of mutual exclusions. This

list states that student # 1 cannot be together with any one student from a specific set of

say 200 other students, student student # 2 cannot be together with any one from another

partially overlapping set with a comparable number of students etc. How can we pick up a

set of 100 students such that any one is completely compatible with the other 99, and what

is this set? Clearly this is a particular example of the general satisfiability problem where

the conditions imposed are just ”two body” exclusions.

It is also a particular case of looking for a graph g inside G where g is a perfect clique

of vertices each of which is connected to all other members in the clique. We encode into

G with N = 400 vertices the various mutual exclusion constraints by not connecting with

edges vertices Vi and Vj if student # i and student # j are not compatible, and connecting

by edges compatible pairs. Clearly if we find within G a clique with n vertices it means,

by our very construction, that the students to which these vertices correspond are indeed

all mutually compatible. We could construct in judicious manner various smaller consistent

subsets, and try piece them together. Often, however a new inconsistency is revealed and

we need to pursue other alternatives. While we certainly can do this in far less steps than


N

n


 =




400

100


 the difficulty of the problem seems to grow at least exponentially with n.

In desperation we might decide to resort to the following primitive alternative and simply

let the 400 students “fight it out”. In this all out war each student will try to push away

members which are inconsistent with him and pull in those which are. This collective

natural selection of the “compatible” - which may well be a prerelevant social phenomena

- would hopefully leave us with the desired large group of mutually consistent individuals.

Unfortunately the outcome of such a 400 way “Somo” fight of staying in the ring is strongly

biased by the initial arbitrary placement of students in the two dimensional arena[6]. Thus
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we could envision a situation where an ideal group of completely compatible dorm candidates

is placed in the center of a group of highly unpopular ones and is “ejected” together with

them. In order to generate the correct large clique we need to completely unbias the starting

position and avoid the severe constraints due to our existence in a physical world with limited

number of dimensions. This can be done only if we go to d = N − 1 dimensions and place

the “students” which, in the inverse problem that we are really after, are metaphors for the

physical points representing the N vertices of the graph, at the vertices of a symmetric N

simplex.

SEARCHING FOR CLIQUES

Our search for perfect cliques uses the same physically motivated dynamical algorithm

previously developed to identify via the physically bunched points clusters or “imperfect

cliques” in a graph[1]. We found that to adapt this algorithm for the present purpose we

need only to enhance the ratio of the repulsive and attractive interactions. Originally it was

chosen to be:

Urep(r)/Uatt(r) = v/n, (1)

which could be relatively small. Thus for an average valency of 10 in a graph with 100

vertices it is only 0.1. However, in order to meet the criteria of perfect cliques we clearly

have to significantly enhance the strength of the repulsive interactions so as to avoid points

which are connected to a fairly large number of the points in the clique but not to ALL of

them from joining in. Thus in the first round of applications we used

Urep(r)/Uatt(r) = 1. (2)

To see how the algorithm works for the case of overlapping cliques we considered two

cliques 7× 7 and 15× 15 with a 2× 2 overlap on a “background” of a 100× 100 matrix with

the average 10% connectivity. The corresponding connectivity matrixes before reshuffling

is shown in Fig.(1). To simulate a real-life situation of networks with unknown structure

(topology) we randomly permute the rows and columns of the matrix C obtaining the

reshuffled matrix C ′. Next we apply our algorithm for clusters reconstruction using equal

attractive and repulsive constant forces in n−1 = 99 dimensional space. The vertices of the

100-simplex were allowed to move under the influence of the forces on the 98-dimensional
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hyper-sphere in 99-dimensions. After a number of steps we analyzed the mutual distances

between the vertices of the simplex and group neighbors which are close to each other

into cliques. The new cluster-connectivity matrix is shown in Fig.(2). The reconstructed
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FIG. 1: Connectivity matrix C with 7× 7 and 15× 15 cliques.

connectivity matrix for the cliques is shown in Fig.(2). We see that due to the large repulsive

forces most vertices did not move close each to others. The only vertices grouped together

are the ones that belong to the cliques.

Other examples involve a n = 100 clique in a N = 400 graph corresponding to the

“students in dorm” question. In addition we had an imperfect clique or cluster of 300

with average valency of 20% on a background of 10% (Fig.(3)). The 100 clique successfully

reconstructed after reshuffling is shown in Fig.(4).

5153



0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 232

Cliques

FIG. 2: Reconstructed clique connectivity matrix for C′ 7× 7 and 15× 15 cliques.

The above result is to our mind fairly impressive. It shows that our original code solves

in very short time the NPC problem of the largest clique. It may still fall short of solving

it in all cases. As a worst case scenario we could envision a vertex (or several such vertices)

which are connected to all the vertices in the clique save one. To avoid these vertices from

joining the clique even in this case, rendering it imperfect, we need that the single repulsion

due to the missing edge, overcome all the n − 1 attractions to the rest of the points in the

clique . Thus the strict perfect clique worst case scenario demands

Urep > (n− 1) · Uatt. (3)

This wildly differs from the above eq.(refx): for a graph G with 100 vertices v = 10 and a
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FIG. 3: Connectivity matrix C for 100× 100 clique.

clique of size n = 10 we need a factor hundred enhancement of the ratio Urep/Uatt from 0.1

to 10!

Our 3− d based intuition would strongly suggest that this stops formation of all cliques,

perfect or not, since as any given point tries move towards its “Designated” clique it may be

“Overwhelmed” by the many repulsive forces which will prevent it from joining the clique.

The configuration with the perfect clique (and the largest perfect clique in particular) fully

formed i.e having all its vertices collapse at a point is indeed the desired final lower energy

state. However there may be false, local minima which trap our system just like in spin

glass[7] and protein folding problem[8].

This is indeed most certainly the case for ”low” dimensionalities. However with d = N−1,
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FIG. 4: Reconstructed clique connectivity matrix for 100× 100 clique.

as is the case here, the above intuition fails. Specifically any one given “test point” feels

just as many different forces in the directions of the other particles namely N − 1 as there

are independent directions d = N − 1 to move in. Ideally therefore the test particle should

be able to simultaneously respond to all different N − 1 forces, move in the direction of all

the attractors and away from all the repellers and in the process further lower the energy of

the system. We can adopt a local, non-orthogonal, system of coordinates where the N − 1

axes are aligned along the unit vectors pointing from ~r - the chosen point, to ~r1, ~r2, . . . ~rN−1

the other N − 1 points. Using our choice of constant forces[10] we have then a net force

F (~r) =
N−1∑

i=1

~r − ~ri

|~r − ~ri| , (4)
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which is the sum of the unit vectors along these axes with + and - signs. Since these are

N − 1 linearly independent vectors the sum never vanishes |F (~r)| > 0 always and no local

minimum arises.

There is one “small” correction however to the above argument. It is due to the fact

that in our original algorithm we have introduced one further constraint on the motion of

the points, namely that at all times on the unit circle |~ri(t)| = 1. It seemed necessary

in order to avoid running away to infinity of repelling vertices or collapse to the origin of

attracting ones. This does however introduce an extra normal reaction force that could

in fact cancel the above sum in eq.(4), and thus yields local minima. Hence in the final

runs we did not impose this constraint. Instead we modified our code to facilitate handling

the increasing distances between points at later stages of the evolution. We found that

our program fully reconstructed the maximal clique[11]. This happens regardless of the

degree of the connectivity of the random background and also of the existence of large and

partially overlapping slightly smaller cliques. Thus for the n=100 maximal clique in an

N=400 vertex graph (i.e the students choice for dorm problem) we added two 80x80 cliques

which overlapped our 100x100 clique in two 60x60 patches which ,in turn, had a 20x20

overlap and used a background with 70% connectivity Fig.(5). Even under such seemingly

unfavorable conditions we reconstructed our clique Fig.(6).
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FIG. 6: Reconstructed cliques for 400-matrix with 70% background connectivity.

inseparable - a phenomenon which is a source of the deleterious multiple local minima. The

general convexity condition for the potentials U(r) which avoids this difficulty -and which our

linear potential trivially satisfies- has been pointed to us by Vassilios S. Vassiliadis (private
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will drastically reduce the number of vertices in the remaining relevant part of G and vastly

accelerate the remaining calculations.
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Chapter 1

Multidimensional Network
Monitoring

for Intrusion Detection

Vladimir Gudkov and Joseph E. Johnson
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An approach for real-time network monitoring in terms of numerical time-
dependant functions of protocol parameters is suggested. Applying complex systems
theory for information flow analysis of networks, the information traffic is described
as a trajectory in multi-dimensional parameter-time space with about 10-12 dimen-
sions. The network traffic description is synthesized by applying methods of theoret-
ical physics and complex systems theory, to provide a robust approach for network
monitoring that detects known intrusions, and supports developing real systems for
detection of unknown intrusions. The methods of data analysis and pattern recogni-
tion presented are the basis of a technology study for an automatic intrusion detection
system that detects the attack in the reconnaissance stage.

1.1 Introduction

Understanding the behavior of an information network and describing its main
features are very important for information exchange protection on computer-
ized information systems. Existing approaches for the study of network attack
tolerance usually include the study of the dependance of network stability on
network complexity and topology (see, for example [1, 2] and references therein);
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signature-based analysis technique; and statistical analysis and modelling of net-
work traffic (see, for example [3, 4, 5, 6]). Recently, methods to study spatial
traffic flows[7] and correlation functions of irregular sequences of numbers oc-
curring in the operation of computer networks [8] have been proposed.

Herein we discuss properties related to information exchange on the network
rather than network structure and topology. Using general properties of infor-
mation flow on a network we suggest a new approach for network monitoring
and intrusion detection, an approach based on complete network monitoring.
For detailed analysis of information exchange on a network we apply methods
used in physics to analyze complex systems. These methods are rather powerful
for general analysis and provide a guideline by which to apply the result for
practical purposes such as real time network monitoring, and possibly, solutions
for real-time intrusion detection[9].

1.2 Description of Information Flow

A careful analysis of information exchange on networks leads to the appropriate
method to describe information flow in terms of numerical functions. It gives us
a mathematical description of the information exchange processes, the basis for
network simulations and analysis.

To describe the information flow on a network, we work on the level of packet
exchange between computers. The structure of the packets and their sizes vary
and depend on the process. In general, each packet consists of a header and
attached (encapsulated) data. Since the data part does not affect packet prop-
agation through the network, we consider only information included in headers.
We recall that the header consists of encapsulated protocols related to different
layers of communications, from a link layer to an application layer. The infor-
mation contained in the headers controls all network traffic. To extract this
information one uses tcpdump utilities developed with the standard of LBNL’s
Network Research Group [10]. This information is used to analyze network
traffic to find a signature of abnormal network behavior and to detect possible
intrusions.

The important difference of the proposed approach from traditionally used
methods is the presentation of information contained in headers in terms of
well-defined numerical functions. To do that we have developed software to read
binary tcpdump files and to represent all protocol parameters as corresponding
time-dependent functions. This gives us the opportunity to analyze complete
information (or a chosen fraction of complete information that combines some
parameters) for a given time and time window. The ability to vary the time
window for the analysis is important since it makes possible extracting different
scales in the time dependance of the system. Since different time scales have
different sensitivities for particular modes of system behavior, the time scales
could be sensitive to different methods of intrusion.

As was done in reference paper[11], we divide the protocol parameters for
host-to-host communication into two separate groups with respect to the pre-
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serving or changing their values during packet propagation through the net-
work (internet). We refer to these two groups of parameters as “dynamic” and
“static”. The dynamic parameters may be changed during packet propagation.
For example, the “physical” address of a computer, which is the MAC parameter
of the Ethernet protocol, is a dynamic parameter because it can be changed if
the packet has been re-directed by a router. On the other hand, the source IP
address is an example of a static parameter because its value does not change
during packet propagation. To describe the information flow, we use only static
parameters since they may carry intrinsic properties of the information flow and
neglect the network (internet) structure. (It should be noted that the dynamic
parameters may be important for study of network structure properties. Dy-
namic parameters will be considered separately.)

Using packets as a fundamental object for information exchange on a network
and being able to describe packets in terms of functions of time for static pa-
rameters to analyze network traffic, we can apply methods developed in physics
and applied mathematics to study dynamic complex systems. We present some
results obtained in references [11, 12] to demonstrate the power of these methods
and to recall important results for network monitoring applications.

It was shown [11] that to describe information flow on a network one can
use a small number (10 - 12) of parameters. In other words, the dimension
of the information flow space is less than or equal to 12 and the properties
of information flow are practically independent of network structure, size and
topology. To estimate the dimension of the information flow on the network one
can apply the algorithm for analysis of observed chaotic data in physical systems,
the algorithm suggested in paper [13] (see also ref. [14]and references therein).
The main idea relates to the fact that any dynamic system with dimensionality
of N can be described by a set of N differential equations of the second order
in configuration space or by a set of 2N differential equations of first order in
phase space.

Assuming that the information flow can be described in terms of ordinary
differential equations (or by discrete-time evolution rules), for some unknown
functions in a (parametric) phase space, one can analyze a time dependance of
a given scalar parameter s(t) that is related to the system dynamics. Then one
can build d-dimensional vectors from the variable s as

yd(n) = [s(n), s(n + T ), s(n + 2T ), . . . , s(n + T (d− 1))] (1.1)

at equal-distant time intervals T : s(t) → s(T · n) ≡ s(n), where n is an integer
number to numerate s values at different times. Now, one can calculate a number
of nearest neighbors in the vicinity of each point in the vector space and plot
the dependance of the number of false nearest neighbors (FNN) as a function of
time. The FNN for the d-dimensional space are neighbors that move far away
when we increase dimension from d to d + 1 (see, for details ref.[11]).

The typical behavior of a scalar parameter and corresponding FNN plot are
shown in Figs. (1.1) and (1.2). From the last plot one can see that the number
of FNN rapidly decreases up to about 10 or 12 dimensions. After that it shows a
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Figure 1.1: Protocol type ID in the IP protocol as a function of time (in τ = 5sec
units).
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Figure 1.2: Relative number of false nearest neighbors as a function of dimension of
unfolded space.
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slow dependency on the dimension, if at all. Fig. (1.2) shows that by increasing
the dimension d step-by-step, the number of FNN, which occur due to projection
of far away parts of the trajectory in higher dimensional space is decreases to
a level restricted by system noise that has infinite dimension. Therefore, for
a complete description of the information flow one needs not more than 12
independent parameters. The dynamics of information flow can be described as
a trajectory in a phase space with the dimension of about 10 - 12. Since this
dimension does not depend on the network topology, its size, and the operating
systems involved in the network, this is a universal characteristic and may be
applied for any network.

However, we cannot identify exactly these independent parameters. Due to
the complexity of the system it is natural that these unknown parameters which
are real dynamic degrees of freedom of the system would have a complicated re-
lationship with the parameters contained in the network protocols. Fortunately,
the suggested technique provides very powerful methods to extract general in-
formation about the behavior of dynamic complex systems. For example, the
obtained time dependence of only one parameter, the protocol ID shown on
Fig.(1.1), is enough to reconstruct the trajectory of the information flow in its
phase space. The reconstructed projection of the trajectory on 3-dimensional
space is shown on Fig. (1.3). Therefore, one can see that the complete descrip-
tion of the network information traffic in terms of a small number of parameters
is possible. The important point is that this trajectory (usually called as an
“attractor”) is well-localized. Therefore, it can be used for detailed analysis
and pattern recognition techniques. It should be noted that the attractor pre-
sented here is obtained from one parameter measurement only, for that being
illustrative purposes. For real analysis we use multi-dimensional high accuracy
reconstruction.

1.3 Real Time Network Monitoring and Detec-
tion of Known Intrusions

The proposed approach for network traffic description provides the possibility of
real-time network monitoring and detection of all known network attacks. This
is because one collects from tcpdump binary output the complete information
about network traffic at any given point in the network. All header parameters
are converted into time dependant numerical functions. Therefore, each packet
for host-to-host exchange corresponds to a point in the multidimensional para-
metric phase space. The set of these points (the trajectory) completely describes
information transfer on the network. It is clear that this representation provides
not only the total description of the network traffic at the given point but also
a powerful tool for analysis in real time. Let us consider some possible scenarios
for the analysis.

Suppose we are looking for known network intrusions. The signature of an
intrusion is a special set of relationships among the header parameters. For ex-
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Figure 1.3: The projection of the trajectory of the information flow 3-dimensional
phase space.
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ample [9], the signature for the attempt to identify live hosts by those responding
to the ACK scan includes a source address, an ACK and SYN flags from TCP
protocol, a target address of the internal network, sequence numbers, and source
and destination port numbers. The lone ACK flag set with identical source and
destination ports is the signature for the ACK scan. This is because the lone
ACK flag set should be found only as the final transmission of the three-way
handshake, an acknowledgement of receiving data, or data that is transmitted
where the entire sending buffer has not been emptied. From this example one
can see that the intrusion signature could be easily formulated in terms of logic
rules and corresponding equations. Then, collecting the header parameters (this
is the initial phase of network monitoring) and testing sets of them against the
signatures (functions in terms of the subset of the parameters) one can filter out
all known intrusions. Since we can collect any set of the parameters and easily
add any signature function, it provides the way for a continuous upgrading of the
intrusion detection system (IDS) built on these principles. In other words, such
an IDS is universal and can be used to detect all possible network intrusions by
adding new filter functions or macros in the existing testing program. It is very
flexible and easily upgradable. The flexibility is important and can be achieved
even in existing “traditional” IDS’s. What is out of scope of traditional ap-
proaches is the mathematically optimized minimization of possible false alarms
and controlled sensitivity to intrusion signals. These properties are an intrinsic
feature of our approach.

The important feature of the approach is the presentation of the parameters
in terms of time dependant functions. This gives the opportunity to decrease
as best as possible for the particular network the false alarm probability of the
IDS. This can be done using sophisticated methods already developed for noise
reduction in time series. Moreover, representation of the protocol parameters
as numerical functions provides the opportunity for detailed mathematical anal-
ysis and for the optimization of the signal-to-noise ratio using not only time
series techniques but also numerical methods for analysis of multi-dimensional
functions. The combination of these methods provides the best possible way, in
terms of accuracy of the algorithms and reliability of the obtained information,
to detect of known intrusions in real time.

Also, the description of the information flow in terms of numerical func-
tions gives the opportunity to monitor network traffic for different time windows
without missing information and without overflowing storage facilities. One can
suggest ways to do it. One example is the use of a parallel computer environ-
ment (such as low cost powerful Linux clusters) for the simultaneous analysis of
the decoded binary tcpdump output. In this case the numerical functions of the
header parameters being sent to different nodes of the cluster will be analyzed by
each node using similar algorithms but different scales for time averaging of sig-
nals (or functions). Thus, each node has a separate time window and, therefore,
is sensitive to network behavior in the particular range of time. For example,
choosing time averaging scales for the nodes from microseconds to weeks, one can
trace and analyze network traffic independently and simultaneously in all these
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Table 1.1: The parameters involved in intrusion signatures as shown on Fig.(1.4).

Number Protocol Parameter Frequency
1 IP Destination IP Address 3
2 IP Source IP Address 1
3 IP Length 1
4 IP More Fragment Flag 2
5 IP Don’t Fragment Flag 2
6 IP Options 1
7 TCP Source Port 1
8 TCP Destination Port 1
9 TCP Urgent Flag 1
10 TCP RST Flag 1
11 TCP ACK Flag 2
12 TCP SYN Flag 2
13 TCP FIN Flag 1
14 UDP Destination Port 2
15 UDP Source Port 1
16 ICMP Type 2
17 ICMP Code 2

time windows. It is worthwhile to remember that the optimal signal-to-noise
ratio is achieved for each time window independently thereby providing the best
possible level of information traffic analysis for the whole network. There are
three obvious advantages for this approach. The first is the possibility to detect
intrusions developed on different time scales simultaneously and in real time.
The second is the automatic decreasing of noise from short time fluctuations
for long time windows due to time averaging. This provides detailed informa-
tion analysis in each time window without loss of information. At the same
time, it discards all noise related information, drastically reducing the amount
of information at the storage facilities. The third advantage is the possibility to
use (in real time) the output from short time scale analyzed data as additional
information for long time scale analysis.

To give an idea of how many parameters are used to describe signatures of
currently known intrusions we use the result of the comprehensive (but probably
not complete) analysis[12] of known attacks, i.e., smurf, fraggle, pingpong, ping
of death, IP Fragment overlap, BrKill , land attack , SYN flood attack, TCP
session hijacking, out of band bug, IP unaligned timestamp, bonk, OOB data
barf, and vulnerability scans (FIN and SYN & FIN scanning). The frequencies
of the parameters involved in signatures for these intrusions are shown on
Fig.(1.4). The numeration of the parameters is explained in Table 1. One can
see that the number of parameters used for signatures of intrusions is rather
small . This fact further simplifies the procedure of the analysis.
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Figure 1.4: Frequencies of the parameters used in signatures of intrusions. For num-
bering rules see Table 1.

1.4 Detection of Unknown Intrusions

The aforementioned approach could be considered a powerful and promising
method for network monitoring and detection of known network intrusions.
However, the more important feature of the approach is the ability to detect
previously unknown attacks on a network in a wide range of time scales. This
ability is based on the method of describing information exchange on a network
in terms of numerical functions of header parameters (or a trajectory in multi-
dimensional phase space) as well as using methods of theoretical physics for the
analysis of dynamics of complex systems. These methods lead to a very useful
result for the small dimensionality of the information flow space. Since the num-
ber of parameters used in packet header is large (on the order of hundreds), the
practical search for unknown (even very abnormal) signals would be a difficult
problem, if not impossible. Therefore, the small dimension of the parametric
space of the information flow is a crucial point for the practical approach for the
detection of unknown intrusions.

To build a real time intrusion detection system that is capable of detecting
unknown attacks, we exploit the fact that we need to analyze only a small
number of parameters. Furthermore, as is known from complex systems theory,
the choice of the parameters is not important unless they are sensitive to system
behavior. The last statement needs to be explained in more detail. Generally,
hundreds different parameters could be encapsulated in the packet headers. The
question is which parameters we need to choose for the right description of the
information flow. Following the discussion in the previous section, one might
surmise that we need to make our choice from the known quoted 17 parameters.
It may be a good guess. However, the number 17 is bigger than the dimension
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of the phase space which we have in mind, and it could be that hackers will
invent new attacks with new signature parameters that are not included in the
set presented in the previous section. The right answer to these remarks follows
from complex systems theory. For a complete system description one needs only
the number of parameters equal to the phase space dimension (more precisely,
the smallest integer number that is larger than fractal dimension of the phase
space). It could be a set of any parameters that are sensitive to the system
dynamics (and the 17 discussed parameters could be good candidates). We do
not know, and do not suppose to know, the real set of parameters until the theory
of network information flow is developed or a reliable model for information flow
description is suggested. Nevertheless, a method developed to study non-linear
complex systems provides tools to extract the essential information about the
system from the analysis of even a small partial set of the “sensitive” parameters.
As an example, one can refer to the Fig.(1.3) which shows the 3-dimensional
projection of the reconstructed trajectory from the time dependent behavior of
only one parameter (the protocol ID shown on Fig.(1.1)). It means that the
complete description of the network information flow could be obtained even
from a small set of “sensitive” parameters.

One of the ways to implement this approach is to use the multi-window
method discussed in the previous section with the proper data analysis for each
time scale. This method of analysis is not within the scope of the current paper
and will be reported elsewhere. We will review only the general idea and the
problems related to this analysis. To detect unknown attacks (unusual network
behavior) we use a deviation of signals from the normal regular network behav-
ior. For these purposes one can use a pattern recognition technique to establish
patterns for normal behavior and to measure a possible deviation from this nor-
mal behavior. However, the pattern recognition problem is quite difficult for
this multidimensional analysis. According to our knowledge, it is technically
impossible to achieve reliable efficiency in a pattern recognition for space with
a rather large dimension, such as 10. On the other hand, the more parameters
we analyze the better accuracy and reliability we can obtain. Therefore, we
have to choose the optimal (compromise) solution that uses pattern recognition
techniques in information flow subspaces with low dimensions. By applying ap-
propriate constraints on some header parameters one can choose these subspaces
as cross sections of the total phase space defined. In this case, we will have a
reasonable ratio of signal-to-noise and will simplify the pattern recognition tech-
nique and improve its reliability. For a pattern recognition we suggest using
a 2-3 dimension wavelet analysis chosen on the basis of detailed study of the
information traffic on the set of networks. The wavelet approach is promising
because it reduces drastically and simultaneously the computational time and
memory requirements. This is important for multidimensional analysis because
it can be used for an additional, effective noise reduction technique.
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1.5 Conclusions

We suggest a new approach for multidimensional real time network monitoring
that is based on the application of complex systems theory for information flow
analysis of networks. Describing network traffic in terms of numerical time
dependant functions and applying methods of theoretical physics for the study
of complex systems provides a robust method for network monitoring to detect
known intrusions and is promising for development of real systems to detect
unknown intrusions.

To effectively apply innovative technology approaches against practical at-
tacks it is necessary to detect and identify the attack in a reconnaissance stage.
Based on new methods of data analysis and pattern recognition, we are studying
a technology to build an automatic intrusion detection system. The system will
be able to help maintain a high level of confidence in the protection of networks.

We thank the staff of the Advanced Solutions Group for its technical support.
This work was supported by the DARPA Information Assurance and Survivabil-
ity Program and is administered by the USAF Air Force Research Laboratory
via grant F30602-99-2-0513, as modified.
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Patent Application 
December 3, 2002 
Joseph E. Johnson, PhD, Inventor &  
Vladimir Gudkov, PhD Inventor 
 
 
A New Methodology for the Analysis and Classification of 
Systems Characterized by Networks, Graphs, Clusters andTopologies. 
 
Introduction   
 
 A network generally refers to an arrangement of objects, with connections among 
some pairs of the objects, but not necessarily every possible pair.  Various types of 
networks represent the flows of people, goods, services, energy, money, power, water, 
and information.   Transportation networks consist of highways, waterways, aircraft flight 
paths, or even walking trails that can be represented by lines that connect points called 
‘nodes’ where the paths (roads, waterways etc) join at juncture points such as towns.  
Electrical networks consist of wires or conductor paths for electricity that connect 
electrical devices (at nodes) as in an electrical power grid distribution system, an 
integrated circuit or chip, or simply a device with parts wired together for electrical 
operation.  The national and global connections among computers known as the Internet 
and related computer networks are examples that consist of  computers, (and information 
processing devices such as  hubs, routers, bridges, and switches) constituting the nodes 
connected by optical fibers and electrical connections.  Communications networks 
include both telephone and telegraph networks.  Economic networks represent the flow of 
goods and services in return for currency of equal value. Energy flow networks and food 
chain networks can represent the flow of solar and related energy among environmental 
components and thus could be called an ecosystem network.  Various utility networks 
which describe both water supply and liquid (or solid) waste removal are prime examples 
of networks. Human (as well as animal and plant systems) contain internal biological 
networks for the flow of blood, fluids, nerve signals, and nutrients.    

Because of the ubiquitous nature of networks, it is of the greatest importance to be 
able to describe the behavior of networks, and to classify their properties and to model 
their dynamic behavior. In the current state of the art, networks are not well understood 
nor can their topologies (connectivities) be classified. More specifically, we mean that 
there is no set of symbols or numbers that exactly correspond, in a one to one manner, to 
the different connectivities or topologies of networks.  The methods in this patent 
application present a novel advance on these problems, greatly improving the current 
state of the art, including the implementation of these new solutions on computational 
devices.  These methods will be shown to lead to descriptions of much more complex 
systems than those as represented above, and thus encompass a vast array of novel 
solutions to network related problems of a very fundamental importance.  It is important 
to realize that most networks in the real world are not highly dense but consist of local 
clusters of high connectivity where the clusters are interconnected with only a few 
connections.  
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 There are two primary purposes and areas of importance of the invention 
presented here.   First, our invention, when embodied in computational devices, can 
describe complex dynamical behavior of all of the physical systems that can be described 
by networks including the networks listed above.  The dynamical solutions can indicate 
weak points in the network and exactly how to correct them such as nodes and paths 
where flow is inhibited or reduced.  Furthermore our methods predict the normal 
dynamical behaviors of various topologies and thus can be used to find abnormal 
dynamics in internet designs or detect potential network intrusions.   Secondly, this 
invention can identify types of networks by characterizing them by a set of numbers, 
which classification, obtained in a computational environment or system, analyzes the 
intrinsic connectedness of a network and can sense if two networks are the same or 
different.  This foundation of classification will serve as the methodology, when 
implemented in computers, of classifying whole topologies, local clusters, characteristic 
network behaviors, and component topologies.      
 
Current Art and Mathematical Foundations 
 
 In its abstract form, we can represent a network as a set of points called ‘nodes’ 
which, for identification, are numbered with the integers (1,2,…n) for a system with n 
nodes.  The connectivities among pairs of nodes are represented by lines which join 
nodes and can be represented by what is called in the literature as the ‘connectivity’ or 
‘adjacency’ matrix: Lij  which is often defined to be equal to ‘1’ if nodes i and j are 
directly connected, and ‘0’  otherwise, where i and j range from 1 to n. The diagonal 
elements, Lii, are traditionally set to ‘1’ if a node is considered as ‘connected to itself’ or 
set to ‘0’ if it is not, thus defining the complete matrix with either ‘0’s or ‘1’s on the 
diagonal.  For certain problems the diagonal is set equal to the negative of the sum of the 
non-diagonal elements in that column.  This results in a matrix that has the sum of all 
elements in each column equal to zero. As the connectivity matrix is symmetric, the sum 
of elements in each row will also be zero. This method of setting the diagonal is called 
the Lagrangian form of the connectivity matrix.  In any of the three methods described 
above for the determination of the diagonal, it is obvious that each describes the 
connectivity in the same way, as connectivity is described by the off-diagonal elements.  
Thus to a certain extent, the method of determining the diagonal is somewhat arbitrary 
without other considerations.        
 Many different connectivity matrices describe the same ‘topology’ or connectivity 
among the nodes.   The root of this problem is that the numbering of the nodes and the 
consequential assignment of the matrix elements as ‘0’ or ‘1’ is as arbitrary as the 
numbering.  The central problem is then to devise a mathematical technique to 
distinguish different networks or graphs and even more generally to classify all possible 
graphs of a given order (number of nodes) in a unique way and thus to eliminate the 
arbitrariness of the node number assignment but to not discard the essential ‘connectivity’ 
and thus to uniquely classify the topology itself.  This problem is known to be of extreme 
complexity and difficulty.  
 The current art is to manually draw all possible topologies of a given order and to 
visually compare a given topology to another to see if the topologies are the same.  By 
‘the same topology’ or the ‘same graph’ or the ‘same network’ we mean the following:  
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Two networks (equivalently called graphs) are topologically the same if and only if one 
of them can have a unique pairing of nodes of network ‘A’ to the nodes of network ‘B’, 
so that the connectivity matrix is the same.  For example a graph where one node is 
connected directly to each of four other nodes (and no other connections are made) is the 
same whether that central node is numbered as 1, 2, 3, 4, or 5.   
 A number of researchers have independently suggested that the eigenvalues of the 
connectivity matrix (by any of the three methods of assigning the diagonal discussed 
above) will have values, which are in one to one (isomorphic) correspondence for, and 
only for, topologically identical networks.  This is known to fail for each of the three 
methods of assigning the diagonals listed above.   It is true that the resulting eigenvalues 
“almost” distinguish the topologies except for a small percentage of networks which are 
called ‘isospectral’ meaning that the same set of eigenvalues represents two different 
topologies.  One might also say that the associated eigenvalues spectrum is ‘degenerate’ 
as several states correspond to it. But in the final analysis, although the connectivity 
matrix eigenvalue method distinguishes many of the topologies, it fails to distinguish a 
small percentage for n=5 nodes and higher n graphs.  Many investigators have continued 
by studying the eigenvector components, which is equivalent to studying the angles 
between the nodal basis (1,2,..) and the eigenvectors associated with each eigenvalue.  
But this has not been very productive and cannot be automated.  One is left in the current 
art with manual methods of visually comparing graphs and networks and exhaustingly 
drawing them by hand in tables or with computer programs that increase in time as the 
number of possible combinations thus proving impossible for any known computer in 
human lifetimes.  
  
Prior Relevant Work of the Inventor 
 
 A Markov matrix is a n x n (square) matrix where n is any positive integer, with 
non-negative elements and with the sum of all elements in each column equaling the 
value ‘1’.  Markov matrices have the defining property that when they multiply a vector 
of non-negative components, the resulting linear transformation gives a new vector that 
also has non-negative components and where the sum of the new components is the same 
as the original sum of the components.  Thus Markov transformations preserve the sum 
of elements of a vector much like a rotation preserves the sum of the squares of 
components of a vector. Markov matrices do not have inverses and consequently do not 
form a mathematical group of transformations (because of the non-negativity condition).  
 However, the inventor previously discovered that by relaxing the condition of 
non-negativity on both the vectors and on the matrix, and retaining only the requirement 
that the sum of components of a vector is conserved by the transformation, that one 
obtains a ‘Markov-Type’ continuous (Lie) group of transformations, M,  and an 
associated generating transformations (Lie algebra), L, where M=exp(tL).   Then, by 
exploring the associated Lie algebra of elements (L = a1L1 + a2L2  + a3L3 + …. + anLn 
where Lk (or as defined below with two indices as Lij ) is the basis for the Lie algebra).  
The first inventor was able to show that for a certain definition of the basis Li  that all 
Markov transformations that are continuously connected to the identity are obtained 
using  M=exp(tL) where the L is defined using non-negative ai . It was also shown that 
the entire general linear group in n dimensions GL(n,R), can be decomposed into these 
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Markov type groups and diagonal transformations (an Abelian scaling group) that simply 
multiplies each component by an exponential growth or decay factor.  The power of this 
result is that now one can use all the mathematical power of continuous group theory to 
address and classify the dynamical process of Markov transformations. It is critical here 
to note that the Lij are defined very precisely as matrices with a ‘1’ at a position (i,j) and 
‘0’ elsewhere except with the Ljj (diagonal) term which is set to ‘-1’.  This has the result 
that any linear combination of the Lij have the property that the sum of elements of any 
column are equal to zero.  This is the defining characteristic for the L matrices that give 
all of the Markov matrices via the equation M=exp(tL).   

Since Markov transformations preserve the sum of components of a vector, these 
transformations have been very useful over the last century for studying socioeconomic 
processes where for example the sum of the number of people or money is kept constant 
while discrete Markov transformations perform shifts from one place to another.  The 
previous work of this inventor now allows for the study of such processes as a continuous 
time evolution rather than the discrete action of a Markov matrix that moves one forward 
in time by finite leaps.  It also brings all of the power of Lie groups and algebra to 
provide a greater understanding of such processes as shown in prior literature.  
 
Description of the Current Invention and Discovery 
 
 While the inventor was working on methods of describing network connectivity 
(in order to better characterize the behavior of different computer networks such as the 
Internet), he characterized the connectivity matrix of the network as being composed of 
‘1’s and ‘0’s as had been done by other researchers as described above.  He then realized 
that these matrices were combinations of exactly those basis elements of the Markov Lie 
group IF one set the diagonal elements equal to the negative of sum of the non-diagonal 
elements in the column. Then this resulting ‘connectivity’ matrix is precisely a member 
of the Markov Lie algebra of generators generating a Markov transformation M=exp(tL) 
parameterized by t and leaving the sum of the vector components conserved upon which 
it acts invariant.  He furthermore realized that to set the diagonal elements to ‘0’ or to ‘1’ 
(or in fact to any value rather than the negative of the sum of the non-diagonal elements 
of the column) was equivalent to simultaneously invoking an exponential growth or 
decay of the conserved quantity at that node making that node a source or sink for the 
quantity that would have otherwise been conserved.  The value of this approach by the 
inventor in utilizing a different interpretation for these matrices, as transformations, will 
lead to the deeper insights forming the basis of this patent application.       

Returning now to the Lie algebra method of assigning the diagonal elements, in 
the study of information flow, the inventor proposes that the vector components could 
represent the ‘amount of information’ (or other entity) at each node and thus this 
transformation, M, provides a dynamical model for the conserved flow of information in 
a continuous fashion among all the nodes of a graph as in an Internet structure.   This in 
tern led the inventor to invent this dynamical model as describing the flow of any 
conserved entity (information, water, energy, electricity, money, people, etc) in a network 
as described by the fundamental connectivity matrix. The power of this realization is that 
it gives a fundamental meaning and connection to the connectivity matrix both in terms 
of a dynamical model of network flows but also a fundamental meaning and connection 
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to the entire theory of Lie groups and Lie algebras and specifically the decomposition of 
the general linear group as previously done by the inventor.    
 With this discovery, the inventor then studied the diagonalization of the 
connectivity matrix, L, and discovered that the eigenvalues were the dynamical rates at 
which the various linear combinations (the eigenvectors) of information were 
approaching equilibrium.   The eigenvectors are then those linear combinations of the 
nodes which have a characteristic dynamical behavior much like the vibrational 
frequencies of normal nodes in other dynamical systems.  This dynamical model 
proposed by the inventor now leads to a deep interpretation for networks and graphs and 
their expression through the connectivity matrix, via the associated dynamical models 
and Lie group theory.  Stated in another way, the prior art represented a graph or network 
topology as a static connectivity matrix with little connection to other fields.   With the 
inventor’s discovery of the interpretations, analogies, and connections described above 
among these multiple mathematical fields, a whole new richness now unfolds that will 
provide vast computational depth to the understanding of both static graphs and networks 
and their full connection to associated dynamical flows.   
 Specifically, the inventor’s model and analogies, lead to all of the subsequent 
results which, when derived from computational devices,  are part of this invention:  First 
one sees that the connectivity matrix could have diagonal elements determined by the 
requirement that the sum over the rows for each column is equal to zero.  This makes the 
matrix an element of the Markov Lie algebra and it consequently generates a 
continuously evolving dynamical Markov transformation that conserves a transfer of 
information (or other conserved entity) among all the attached nodes of that network or 
graph as described by the connectivity matrix.  Immediately from the Lie group theory 
the inventor showed that this connectivity matrix with ‘1’s and ‘0’s on the off diagonal 
positions describes exactly a non-directed graph or network that has equal bandwidth 
among all connecting pairs and thus giving exactly equal flow rates. Any other non-
negative values could also be used in off-diagonal positions thereby representing more 
complex networks with asymmetric flows and with inter-nodal flows at different rates. 
The mathematical interpretation of the eigenvalues is that they are precisely the rates of 
decrease of these linear combinations of nodal information as represented by their 
associated eigenvectors. This result explicitly lets one now determine that linear 
combination of nodes (eigenvector) that has a unique dynamic behavior with a decay rate 
given by the associated eigenvalue.  These results now allow a user of this system, 
embodied into a computer model, to model complex flows of any conserved entity with 
equal bandwidth connectivity as described by a given connectivity matrix, and to model 
the connectivity matrix by these same flows. If the diagonals are set as above so that the 
sum over rows of the L matrix are zero for each column, then one gets conservation of 
the sum of components.  If instead one sets the values to be ‘1’ or ‘0’ or another value, 
this will represent as associated growth or decay rates of information at the nodes.   If 
these systems represent symmetric flows (ie Lij = Lji ) then the eigenvalues will be real. 
Otherwise the eigenvalues will be complex numbers and represent a more complex 
dynamical evolution.  A specific new example of this is the description of a directed 
graph which allows transfer in one direction but not in the reverse direction. Such a 
connectivity matrix will be represented by Lij = 1 but with Lji = 0. Thus this invention 
relates also the full classification and description of directed graphs.  The previous 
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methodology describes the entirety of all possible graphs and networks that provide any 
bandwidth in either direction (including zero thus disallowing transfer).   
 The inventors first set of claims is for the representation, in computational 
systems, of the associated network matrices as described above, along with the dynamical 
representations in terms of eigenvectors and eigenvalues, for the determination of flows 
in networks defined by the Lie algebra. This set of claims includes but is not limited to 
the methods for (a) the dynamical modeling of network systems by transformations 
derived from the static connectivity matrix, and conversely (b) the use of the dynamical 
parameters, eigenvalues, eigenvectors, and methods of setting the diagonals for 
understanding and classifying the static properties of the graph or network, and its 
underlying topology. (c) The next claim presented here relates to the improvement in the 
description of the topology of a graph utilizing computer systems.  As described above, 
our designation of the L matrix representation of an undirected, equal bandwidth graph as 
a connectivity matrix is not new in itself as it previously was utilized in another context 
and called the Lagrangian matrix when the diagonal terms are determined as above.  It is 
known that the  eigenvalues of L alone are not sufficient to determine the topology of the 
graph or network uniquely, or more significantly, than one can achieve with the 
eigenvalues of L when the diagonal is replaced by either ‘1’s or ‘0’s.  None of the 
invention components or insights presented up this point are of direct help in improving 
the classification of the topologies of traditional networks 
 Specifically, the connectivity matrix shows the adjacent connectivities between 
neighboring nodes. In what follows, the inventor designs a basis for the analysis of higher 
order connectivity as a novel method for topological identification. Higher order 
connectivity is achieved by taking the fundamental matrix to various powers. But it is 
quickly realized that in the expansion M(t) = exp(tL) one has all powers of L (as it is the 
expansion of e^(tL) (defined by 1 + tL + ((tL)^2)/2! + …) as is necessary because M 
provides the continuous flow of information among all nodes.  Thus there is no new 
information in the powers of the basic L matrix (with any form of the diagonal) as all 
powers are diagonalized when L itself is diagonalized.  Thus any isospectral degeneracy 
would remain in the eigenvalue spectra of higher powers of L.  

For the following novel work, we proceed with a non-linear approach.  We set the 
diagonal matrix elements equal to zero thus defining a connectivity matrix K1. By 
multiplying the matrix by itself, we obtain a matrix, K2 = K*K.  The resulting elements of 
K2 give the number of ways that the nodes can be connected by two transitions.  We 
remove the diagonal and place the values, in order, in the first row of a new matrix ‘S’ 
and then place zeros on the diagonal of K2. These diagonal values give the number of 
different ways that a transition can occur from a node i back to that node in two steps and 
thus represents the self-connectivity in second order.  We next form  K3 =  K*K2 and as 
before we remove the diagonal and place it in the second row of the matrix S and put 
zeros in the diagonal positions of K3.  These values give the number of different 
transitions that one begin at a node and return to that node only after exactly three 
transitions.  We continue this process for 2n-2 steps which provides for exactly n-1 steps 
to the nth node and the n-1 steps back to the original node.  This process thus explores all 
self connecting transitions and counts those that do not revisit the node before the 
requisite number of steps are executed (thus is self avoiding).  One notes that the 2(n-1) x 
n matrix S which we call the self-connectivity matrix, consists of a column vector of 
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length 2(n-1) for each node that consists of number of unique ways that that node is self-
connected. For each node, this column vector is independent of the numbering of the 
nodes.  One notes that the process of removing the diagonal and replacing it with zeros is 
a non-linear process that makes the rows of S and the remaining 2(n-1) matrices Km 
linearly independent.  Thus it follows that the eigenvalues sets for each of the 2(n-1) of 
the Km matrices are also linearly independent.       . 

The Km
ij matrices give the number of ways that independent paths are formed that 

provide transitions from i to j without revisiting i in the process. These matrices ‘feel out’ 
the network in transitions of m nodes at a time.  We replace the zero diagonal values with 
the negative of the sum of the values in that row thus making each component matrix a 
generator of  a continuous Markov transformation.  We find the eigenvalues of each of 
the Km

ij matrices and use the n eigenvalues to form a row of a new matrix, ‘E’ which will 
have 2(n-1) rows corresponding to the eigenvalues of Km

ij .   The eigenvalue sets for each 
m represent the rates of approach to equilibrium for the associated eigenvectors of the 
transition matrix of that order.  The E matrix is totally independent of the node labeling.  
Next we take all of the n eigenvalues for each value m = 1 to 2(n-1) and construct a new 
matrix ‘V’ by placing the eigenvalues in rows in order by the value of the eigenvalue and 
next in order the value of m.  This gives us a matrix with the columns labeled with the 
node numbers (as with S) and the rows labeled with the eigenvalues values at 
successively higher values of m.  

We now have three matrices S, E, and V of which the columns of S and V depend 
upon the node numbering.  By adjoining S to the top of V, the numbering of the nodes is 
maintained.  Successively, each column of this adjoined matrix is ordered by sorting the 
columns in order of the values in the first row, then the second only reordering those 
columns which have up to that point are not uniquely ordered.  This methodology 
provides unique and extensive metrics for the description of many of the aspects of the 
network and associated clusters as delineated below.  We note that the derivation of the 
matrices S, E, and V is lossless in the sense that one can retrieve all information of Lij 
from these matrices.  We also note that the algorithms for the derivation of these matrices 
are extremely fast and increase linearly with the number of nodes. In particular, the 
determination of S is extremely fast even for very large networks.  

Additionally, to identify, simplify and accelerate the algorithms for graph and 
cluster identification, we have invented still additional tools and metrics in the form of 
algorithms that the measure of the identity of the connectivity matrixes, their products 
and their internal structures (topology, order etc). These functions are refered to as the  
mutual information (or entropy) of the S, V, and E matrices including specifically the  
connectivity matrix itself.  These measures give unique and invariant information about 
network topology represented by a set of real numbers called generalized entropies. We 
here describe the algorithm for the calculation of mutual entropies by considering a  
matrix  C  which could be any of the matrices discussed above.  

Let a graph or network  which consists of vertices  connected by edgesG iV ijE .  
It is described by a connectivity matrix C  with 1ijC = if is connected to , elsei j 0ijC = . 
We also set .  A vertex relabeling  leaves  invariant but changes C  
according to 

0iiC = ( )i p i→ G

  (1) TC C P CP′→ =
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with  an orthogonal matrix with only one non-zero element in each row  and column 
, which represents the above permutation 

P i
( )j p i=

 , ( ) .j p iP δ=  (2) 
If we normalize the connectivity matrix C  so that 

 
, 1

1,
n

ij
i j

C
=

=∑  (3) 

 
then  could then be considered as the probability that  and  are 

connected. The Shannon entropy, (corresponding generalized entropies could be used 
instead of the Shannon one), 

n
i j

P =∑ ijC

i

iV jV

  (4) 
1

( ) log
n

i
j

H row P P
=

= −∑
is a measure of the uncertainty of the connections for a given network.  The amount of 
mutual information gained via the given connectivity of the network is 

 
,

( ) ( ) ( ) ( | )

log( / ),
n

ij ij i j
i j

I C H row H column H column row

C C PP

= + −

=∑  (5) 

where 

  (6) 
,

( | ) log( ).
n

ij ij
i j

H column row C C= −∑
 

( )I C does not depend on the vertex relabeling and is a permutation invariant measure for 
the  connectivity matrix. If the mutual entropy for two connectivity matrices are different, 
they correspond to different graphs. We found that the entropy is already sufficient to 
distinguish even between graphs that are normally cospectral.  

The extension of the algorithm for calculation of Shannon entropy could be used 
for calculations of mutual Rényi entropy and Tsallis entropy.  For example, based on 
definition of Rényi entropy, the expressions in eqs.(5) and (6) are transformed into 

                                                           
1

1( ) log
1

n
q

q i
j

H row P
q =

= −
− ∑  

and  
 

                                                            
,

1( | ) log( ),
1

n
q

q i
i j

H column row C
q

= −
− ∑ j  

giving mutual information Rényi ( )qI C  for the given matrix .  C
Using the Rényi information (and, for essentially non-equilibrium network 

dynamics cases, Tsallis information), one can not only distinguish between different 
network topologies on the base of the connectivity matrixes but extract information about 
network topology, such as number of clusters, cluster’s dimensionalities etc. Moreover, 
by monitoring appropriate functions of mutual information, one can observe in real time a 
change in topology of the given network including a cluster’s formation, disappearance  
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or appearance of group’s connections, change of the connection “styles”,  and other 
features.  

For example, during the formation of  a new cluster with a high level of 
connectivity in a 100 node network, Shannon and Rényi mutual information smoothly 
increase with the size of the cluster as shown on the Figure 1. 
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However, a difference of mutual Shannon information and  Rényi information of kind 2 
(q=2) displays the sharp dependence of the size of the formed cluster (Figure 2). 
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This gives a unique opportunity to monitor dynamical behavior of the network in 
real time. It should be noted that different entropies are sensitive to different patterns of 
network topology (such a size of clusters, number of clusters, fractional dimensionality, 
etc), therefore many important properties of network can be extracted using suggested 
methods.  
  In the following, our claims refer to the mathematical functions and matrices 
defined above, as embodied in computational devices, whether the device is mechanical, 
biological, electrical, optical, or any combination of these in either analogue or digital 
embodiments.  The specific software algorithms for these functions and matrices are 
known to anyone skilled in this art.   Specific claims and applications follow:  
 
Claims 
 

1. The function ( )qI C  can be used in most cases to uniquely distinguish network 
(graph) topologies, and can be adjoined to the S, E, and V matrices to provide a 
vast depth of information not just to distinguish a network (or subnetwork) but to 
provide useful knowledge on the statics and dynamics of the clusters and their 
hierarchies.  The value of this claim is even greater due to the extremely fast 
ability of these functions to be calculated for large networks and graphs.   

2. As larger network can be viewed as a network (joining) of smaller networks it 
follows that larger structures can be approximated as networks of smaller 
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structures.  The embodiment of the functions in equations  (5) – (7) for the 
identifying of networks and sub-networks is clamed as a novel method when 
embodied in any computational system. 

3. To identify internal network structures and its dynamical behavior (changes of the 
structure as a function of some parameters) the equations for the Shannon entropy 
(4) – (7) can be replaced by the corresponding sets of Renyi and Tsallis entropies. 
(Generalizations and combinations of these entropies are used in the claimed 
algorithm to identify the specific feature of networks / graphs.) 

4. General mutual information can be used for calculation and monitoring of 
survivability and assurance of network stability for distributed forces on a battle 
field and in distributed business operations.  

5. Appropriate  functions of  ( )qI C  can be used for automatic calculation of the 
level of stability and proper functionality of dispersed computational and/or  
remote sensors network for self-regulation of the level of connectivity with a 
given assurance for survival.  

6. Monitoring of the set of functions ( )qI C  can detect of unusual activities (and 
formation of new groups of collaborators) on a network (communication, material 
supply, etc). 

7. Real time monitoring of proper ( )qI C  can be used for determination in advance 
possible outrages and weak chains in the power supply, resources distribution and 
communication networks. 

8. Calculation of ( )qI C  for large data bases (data warehouses) with diverse sources 
of incoming data can be used for identification and localization of clusters of 
correlated data sets. 

9. The self connectivity matrix, S, defined above provides the a novel spectrum of 
the clustering associated with any node and at all chain links.  These spectral 
values can be compressed by weighting with a exponentially decreasing function 
of the node level (or similar measure) to give a single numerical measure of the 
cluster size associated with each node.   

10. The eigenvalues contained in E give the rate of approach to equilibrium for 
systems described by the associated connectivity matrix from which it is derived 
and for the nodal weights as expressed in the associated eigenvector in V. 

11. Continuous transformations as generated by the component 2(n-1) different 
generating matrices contained in V provide transformations that are non-revisiting 
for the initializing node.    

12. Specifically we claim the application of these algorithms to the monitoring of 
both internet and telephone networks for the detection of cyberterrorism, 
unauthorized intrusions and use as well as for the identification of aberrant 
behavior indicating a system malfunction.  

13. Specifically we also claim the application of these algorithms, and specifically the 
use of information metrics, to the identification of the survivability of distributed 
(networked) systems in military and battlefield deployments as well as the 
distributed network channels for business and transportation monitoring.        
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Applications 
 
The very novel methods described in this patent application, when implemented 

in computational devices as described above provide very substantial inventions in two 
domains:  (1) The classification, organization, and identification flows of  information, 
money, goods, people, electricity, water, and other quantities listed above, of dynamical 
behaviors of all manner of networks thus providing the methods for identifying problems, 
improving flows, and detecting both intentional intrusions and natural failures. (2) The 
classification and full description of topological structures including the critical area of 
network cluster identification as associated with all forms of networks and the 
classification of subnetworks as identified by the numerical signatures in the S, E, V, and 
Information functions and matrices described above.  Of the greatest importance and 
novelty is the extreme speed with which these algorithms work for very large clusters 
thus allowing both static computations of clusters and topological metrics as well as the 
rapid recomputation thus allowing the dynamical tracking of topological network 
dynamics.  
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